

GPON OLT CLI USER MANUAL

Version V2.0

Release Date 2019-5-20

CONTENTS

1.	Ac	Access OLT			
2.	. Command Line Interface14				
	2.1 Abstract			14	
	2.2	2.2 CLI Configuration Mode			
	2.3	CLI	Specialities	15	
	2.3	3.1	Online Help	15	
	2.3	3.2	Display Specialities	20	
	2.3	3.3	History Commands	20	
	2.3	3.4	Error Messages	21	
	2.3	3.5	Edit Specialities	22	
3.	OI	T Ma	anagement Configuration	24	
	3.1	Cor	nfigure Outband Management	24	
	3.3	1.1	Enter AUX Port Configuration Mode	24	
	3.:	1.2	Outband Management IP address	24	
3.1		1.3	Outband Management IPv6 Address	25	
	3.:	1.4	Show AUX Port Information	26	
	3.2	Cor	nfigure Inband Management	26	
	3.3	Cor	nfigure Manangement Gateway	27	
	3.4	Cor	nfigure DNS	29	
4.	Рс	ort Co	nfiguration	30	
	4.1	Por	t Configuration	30	
	4.:	1.1	Enter Port Configuration Mode	30	
	4.:	1.2	Enable /Disable Port	30	
	4.:	1.3	Configure Port Description	31	
	4.:	1.4	Configure Port Duplex Mode	32	
	4.:	1.5	Configure Port Speed	33	
	4.:	1.6	Configure Port Rate Limitation	34	
	4.:	1.7	Configure Port VLAN Mode	35	
	4.:	1.8	Configure Hybrid Port VLAN	36	
	4.:	1.9	Configure Trunk Port VLAN	37	

	4.1.10		Configure Port PVID	. 38
	4.1.11		Configure Access Port VLAN	. 39
	4.1.12		Configure Port Flow Control	. 40
	4.1.13		Configure Port Broadcast Suppression	.40
	4.1	.14	Configure Port Multicast Suppression	.41
	4.1	.15	Configure Port Unknown Unicast Suppression	42
	4.1	.16	Configure Port Isolation	.43
	4.1	.17	Configure Port Loopback	. 44
	4.1	.18	Configure Port Loopback Detection	45
	4.1	.19	Configure Port Jumboframe	46
	4.1	.20	Show Port Statistics	. 47
	4.1	.21	Clean Port Statistics	. 48
	4.1	.22	Show Interface Configurations	. 48
4	4.2	Exa	mple	50
5.	Por	t Ag	gregation Configuration	52
!	5.1	Intr	oduction	. 52
!	5.2	Por	t Aggregation Configuration	.52
	5.2	.1	Create Static Aggregation Group	.52
	5.2	.2	Configure Load Balancing Policy of Group	53
	5.2	.3	Configure Member Port of Group	54
6.	VLA	AN Co	onfiguration	. 56
(6.1	VLA	N Configuration	56
	6.1	.1	Create/Delete VLAN	.56
	6.1	.2	Configure/Delete VLAN Description	. 57
	6.1	.3	Configure/Delete IP Address and Mask of VLAN	.58
(6.2	Sho	w VLAN Information	59
7.	VLA	AN Tr	ranslation/QinQ	. 61
-	7.1	Con	ifigure VLAN Translation/QinQ	.61
-	7.2	Exa	mple	62
8.	ARI	P Pro	эху	63
9.	MA	C Ad	Idress Configuration	. 64
9	9.1	Ove	erview	.64

9.2 C	onfigure MAC Address	65
9.2.1	Configure MAC address Table	65
9.2.2	Configure MAC Address Aging Time	66
9.2.3	Clean MAC Address Table	66
9.2.4	Configure Maximum Learnt MAC Enties of Port	67
9.3 SI	now MAC Address Table	67
9.3.1	Show MAC Address Table	67
9.3.2	Show MAC Address Aging Time	68
10. Confi	gure Port Mirroring	69
10.1	Configure Mirroring Destination Port	69
10.2	Configure Mirroring Source Port	69
10.3	Delete Port Mirroring	70
11. IGMP	Configuration	72
11.1	IGMP Snooping	72
11.1.1	Enable/Disable IGMP Snooping	72
11.1.2	Configure Multicast Data Forwarding Mode	72
11.1.3	Configure Port Multicast VLAN	73
11.1.4	Configure Multicast Router Port	74
11.1.5	Configure Static Multicast	75
11.1.6	6 Configure Fast Leave	75
11.1.7	Configure Multicast Group Limit	76
11.1.8	Configure Parameters of Special Query	77
11.1.9	Configure Parameters of General Query	78
11.1.1	.0 Configure Source IP of Query	78
11.1.1	1 Configure Multicast Member Aging Time	79
11.1.1	.2 Show Multicast Gourp Information	80
11.1.1	.3 Configure Multcast on PON	80
11.2	Example	81
12. ACL C	onfiguration	84
12.1	Overview	84
12.2	ACL Confiuration	85
12.2.1	IP Standard ACL	85

12.2.	2 IP Extended ACL	86
12.2.	3 ACL Based on MAC Address	87
12.2.4	4 ACL Based on Port Binding	89
12.2.	5 ACL Based on QoS	90
12.2.	6 ACL Rule Apply to Port	92
12.3	Example	93
13. QoS (Configuration	95
13.1	Configure Queue Scheduling Mode	95
13.2	Configure Queue Mapping	96
14. STP C	Configuration	98
14.1	STP Default Settings	98
14.2	Cofigure STP	
14.2.	1 Enable STP Function	
14.2.	2 Enable Port STP	100
14.2.	3 Configure Bridge Priority	100
14.2.	4 Configure Forward Delay	101
14.2.	5 Configure Hello Time	103
14.2.6 Configure Max Aging Time		104
14.2.	7 Configure Priority of Designated Port	105
14.2.	8 Configure Path Cost of Designated Port	106
14.2.	9 Configure Edge Port	107
14.2.	10 Configure Point to Point Mode	108
14.3	Show STP Information	109
15. DHCF	P Management Configuration	110
15.1	Configure DHCP Server	110
15.2	Configure DHCP Relay	
15.3	Configure DHCP Snooping	113
16. L3 Ro	ute Configuration	119
16.1	L3 Route Configuration	119
16.1.	1 Hardware Router Table	119
16.1.	2 Static Route	119
16.1.	3 Key Chain	120

16.2 F	RIP	121
16.2.1	RIP Overview	121
16.2.2	RIP Configuration	122
16.2.3	RIP Configuration Example	131
16.3 (DSPF	138
16.3.1	OSPF Overview	138
16.3.2	OSPF Configuration	139
16.3.3	OSPF Configuration Example	150
16.4 ľ	Vanipulate Routing Updates	158
16.4.1	Route IP List	158
16.4.2	Route Redistribution	164
16.4.3	Distribution List Control Routing Updates	169
16.4.4	Routing Maps to Control Routing Updates	176
16.4.5	Prefix Lists to Filter Routing	
17 IPv6		186
17.2	/LAN IPv6 Address	186
17.3 I	Pv6 Static Neighbour	
17.4 I	Pv6 SLAAC	
17.4.1	IPv6 SLAAC Work Processes	189
17.4.2	IPv6 SLAAC Configuration	190
17.4.3	Example(pending)	
17.5 I	DHCPv6	195
17.5.1	DHCPv6 Overview	195
17.5.2	DHCPv6 Server	198
17.5.3	DHCPv6 Relay	207
17.6 I	Pv6 Route	212
17.6.1	IPv6 Static Route Configuration	212
17.6.2	View IPv6 Hardware Routing Information	213
17.7 I	Pv6 Connectivity Test	214
18 PON M	lanagement	
18.2 9	Show PON Port Info and Optical Power	215
18.2.1	Show Pon Port Statistics	215

18.2.2		Show PON Port Optical Power	215
18.2.3		Show ONU Optical Transceiver	216
18.3 F		ON Port Configuration	216
18.3.1		Enable/Disable PON	216
17.1	0	NU auto-learn configuration	218
19 ONU	M	anagement	219
19.2	0	NU Basic Configuration	219
19.2.	1	Show Auto-find ONU	219
19.2.	2	ONU Automatic Authorize	219
19.2.	3	Show ONU Authorized Info	220
19.2.	4	Show ONU Authorized Detail-info	220
19.2.	5	Activate Deactivate ONU	221
19.2.	6	ONU Authorization	221
19.2.	7	Configure ONU Description String	222
19.3	0	NU Remote Configuration	223
19.3.	1	Show ONU SFP Info	223
19.3.2		Upgrade ONU	223
19.3.3		Auto-upgrade ONU	225
19.3.	4	Reboot ONU	225
19.3.	5	TCONT Configuration	226
19.3.	6	GEMPORT Configuration	227
19.3.	7	ONU Service Configuration	228
19.3.	8	Service-port Configuration	229
19.3.	9	ONU UNI Configuration	231
19.3.	10	ONU FEC Configuration	233
19.3.	11	Show ONU Service	233
19.3.	12	Show ONU Capability	233
19.4	0	NU Remote Port Configuration	234
19.4.1		ONU Port Enable Disable	234
19.4.	2	ONU Port Autonegotiation	234
19.4.	3	ONU Port Flow Control Configuration	235
19.4.	4	Multicast VLAN Configuration	235
		7	

19.4.5	Configure ONU Iphost	236
19.4.6	ONU Port Multicast Tag-strip Configuration	237
19.4.7	Example for SFU	237
19.4.8	Example for HGU	239
19.5 I	Rogue-onu Configuration	242
19.5.1	Rogue-onu-detect	242
19.5.2	Rogue-onu status	243
20 ONU T	emplate Management	244
20.2	Summary of ONU Template	244
20.3	ONU Template Configuration	245
20.4	DBA Template Configuation	246
20.5	Traffic Template Configuation	248
20.6 I	Line Template Configuation	249
20.7	Service Template Configuation	253
20.8	Alarm Threshold Template Configuration	255
20.9	Show/Delete Profile Configuration	256
21 ONU A	uto-learn Configuration	258
21.2 (ONU Auto-learn	258
21.3 I	Enable Auto-learn	259
22 System	n Management	260
22.2 (Configuration Management	260
22.2.1	Save Configurations	260
22.2.2	Erase Configurations	260
22.2.3	Show Startup Configurations	261
22.2.4	Show Running Configurations	261
22.2.5	Upload/Download Configuration File	261
22.3 (Check System Information	262
22.3.1	Check System Running Information	262
22.3.2	Check Version Information	262
22.3.3	Check System Running Time	263
22.4	System Basic Configurations	263
22.4.1	Configure System Name	263

22.4.2 Confi		Configure Terminal Display Attribute	264
	22.4.3	Configure Terminal Time-out Value	264
22.5 S		System Basic Operations	265
	22.5.1	Upgrade System	265
	22.5.2	Network Connectivity Test	266
	22.5.3	Reboot System	266
	22.5.4	Telnet	266
	22.5.5	Configure RTC System Time	267
	22.5.6	NTP Client	267
	22.5.7	Timezone Configuration	268
	22.5.8	Fan Control	268
2	2.6	Debug Information	269
	22.6.1	Enable/Disable CPU Debug Information	269
	22.6.2	Enable/Disable Functional Module Debug Information	270
23	User N	/Janagement	271
2	3.2	User Privilege	271
2	3.3	Default User	271
2	3.4	Add User Account	271
2	3.5	Show User Account List	272
2	3.6	Delete User Account	272
2	3.7	Modify Password	272
24	SNMP	Configuration	274
2	4.2	SNMP Introduction	274
2	4.3	SNMP Version and MIB	274
2	4.4	SNMP Configuration	276
	24.4.1	Configure Community	276
	24.4.2	Configure Trap Server Address	276
	24.4.3	Configure Contact Information	277
	24.4.4	Configure Location Information	278
25	Alarm	and Event Management	279
2	5.2	Alarm and Event Introduction	279
2	5.3	Alarm Management	279

	25.3.1	System Alarms		
	25.3.2	PON Alarms	282	
	25.3.3	ONU Alarms	284	
2	5.4 E	vent Management	286	
	25.4.1	System Events	287	
	25.4.2	PON Events	288	
	25.4.3	ONU Events	288	
26	System	Log	290	
2	6.2 S	ystem Log Introduction	290	
	26.2.1	Log Type	290	
	26.2.2	System Log Level	291	
2	6.3 C	Configure System Log	292	
	26.3.1	Show System Log	292	
	26.3.2	Clear System Log	292	
	26.3.3	Configure System Log Server	293	
	26.3.4	Configure Save Level of System Log	293	
	26.3.5	Save System Log to Flash	294	
	26.3.6	Clear System Log in Flash	294	
	26.3.7	Upload System Log	294	

1. Access OLT

You can access OLT by CLI (Command Line Interface) via console cable or telnet. This charpter introduces how to access OLT CLI via console cable.

- 1. Connect PC serial port or USB-to-Serial port to OLT console port by console cable.
- 2. Run secureCRT or other simulation tools such as Putty in the PC, and set parameters as follows.
 - Baudrate: 115200
 - Data bits: 8
 - > Parity: none
 - Stop bits: 1
 - Follow control: none

tegory:				
Connection	Serial Opti	ons		
Logon Scripts Senal Terminal Modes Mapped Keys Advanced Appearance Window Log File Printing Advanced Advanced Ymodem/Zmodem	P <u>o</u> rt: <u>B</u> aud rate: <u>D</u> ata bits: P <u>a</u> rity: <u>S</u> top bits: <u>S</u> erial break	COM1 115200 8 None 1 length: 100	Flow Control DIR/DSR RTS/CTS XON/XOFF	
				[

COM port properties

After truned on the power, there is boot information printing. After startup, press enter and input username and password to login.

Notice: The default username and password of CLI both are admin. For example,

Login: admin Password: admin gpon-olt> enable Password: admin gpon-olt#

Input commands to configure or check device's status. Input "?" any

time you need help.

This document will introduce each command begin at next charpter.

2. Command Line Interface

2.1 Abstract

GPON OLT provides command line interface for configuration and management. The following is its specialities.

- Configure from console port.
- Input "?" any time you need help.
- Provide network test command, such as ping, for diagnosing connection.
- Provide FTP service for uploading and downloading files.
- Provide Doskey analogous function, you can execute a history command.
- Support ambiguous keywords searching, you just need to input unconflict keywords and press "tab" or "?".

2.2 CLI Configuration Mode

GPON OLT provides three configuration modes.

- Privileged mode
- Global configuration mode
- Interface configuration mode

The following table shows specialties, commands to enter and prompts.

Clumodo	Specialty	Drompt	Command	Command		
CLIMODE	Specialty	Flompt	to enter	to exit		
	Show					
Drivilogod	configuration					
Privilegeu	s and execute	gpon-olt#		exit		
mode	system					
	commands					
Global	Configure	anon olt	and the second terms			
configurati	system	gpon-olt	gpon-oit	gpon-on	configure	exit
on mode	parameters	(conig)#	terminai			
Interface	Configure	anon olt	interface			
configurati	nfigurati interface		{interface_ty	exit		
on mode	parameters	(contig-it)#	pe slot/port}			

2.3 CLI Specialities

2.3.1 Online Help

GPON OLT CLI provides the following online help:

- Completely help
- Partly help

You can get some help information of CLI with the help above.

(1) Input "?" to get all commands and illustrations at any configuration mode.

gpon-olt (config)#

	access-list	Add an access list entry.
	alarm	Specify alarm.
	banner	Set banner string
	channel-group	Etherchannel/port bundling configuration.
	clean	Specify clean operation.
	clear	Specific save syslog to flash.
	сору	Copy configuration
	debug	System debugging functions.
	enable	Modify enable password parameters
	enable-password	Set your enable password.
	end	Exit current mode and down to previous
n	node	
	erase	Erase info from flash.
	event	Specify event.
	exec	exec system cmd
	exit	Exit current mode and down to previous mode
	fan	Specify olt fan management.
	gateway	system manage gateway.
	help	Description of the interactive help system
	hostname	Set system's network name
	igmp	Global IP configuration subcommands

interface	Select an interface to configure.
ір	IP information
ipmc	Global IP configuration subcommands
isolate	the isolate configuration information.Set

switchport characteristics.

13	set ecmp dip reg
line	Configure a terminal line
list	Print command list
log	Logging control
login-password	Reset your login password.
mac	Configure the MAC address table.
mc	pim add ipmc group
monitor	Configure SPAN monitoring.
no	Negate a command or set its default.
password	Assign the terminal connection password
pim	pim add ipmc group
ping	ping command
profile	Select profile to configure.
queue-scheduler	Configure egress queueing policy.
quit	Exit current mode and down to previous mode
reboot	Reboot the switch.
save	Specific save syslog to flash.

service	Set up miscellaneous service
set	Specify set command.
show	Show information
snmp-server	Snmp server config
spanning-tree	Config STPD information.
storm-control	Specify the storm control.
switch	switch to shell
syslog	Specific system log save level, which syslog level

not less than level will save to flash.

tftp	Specify tftp download.
time	Specify system time configuration.
upgrade	Specify upgrade system.
upload	Upload file for software or user config.
user	Manage System's users.
vlan	Vlan commands.
write	Write running configuration to memory,

network, or terminal

(2) Input "?" behind a command, it will display all key words and illustrations when this site should be a key word.

gpon-olt (config)# interface

gpon Specify gpon interface

gigabitethernet GigabitEthernet IEEE 802.3z. vlan Config vlan information.

(3) Input "?" behind a command, it will display description of parameters

when this site should be a parameter.

gpon-olt (config)# access-list

<0-999>	IP standard access list.
<1000-1999>	IP extended access list.
<2000-2999>	L2 packet header access list.
<3000-3999>	User define field access list.
<4000-4999>	Vlan translation access list.
<5000-5999>	Port business access list.
<6000-6999>	Port quality of service access list.
<7000-7999>	Port Ipmc Vlan translation of service access list.

(4) Input a character string end with "?", it will display all key words that

Begin at this character string.

gpon-olt (config)# e

enable Modify enable password parameters

enable-password Set your enable password.

end End current mode and change to enable

mode.

erase Erase info from flash.

event Specify event

exec Exec system cmd

exit Exit current mode and down to previous mode(5) Input a command and a character string end with "?", it will display all key words Begin at this character sring.

gpon-olt (config)# show ver

version show version command.

(6) Input a character string end with "Tab", it will display completely key words that Begin at this character string when it is unique.

2.3.2 Display Specialities

GPON OLT CLI provides the following display specialities. There is a pause when the information displays a whole screen at a time. Users have two ways to choose.

Operation	function
Input <ctrl+c></ctrl+c>	Stop displaying and executing.
Input any key	Continue displaying next screen

2.3.3 History Commands

CLI provides Doskey analogous function. It can save history commands that executed before. Users can use direction key to invoke history command. The device can save at most ten commands.

Operation action	result
------------------	--------

Display history	history	Display all history
commands		commands.
Visit provious	Lin direction key "个" or	Display previous
	Up direction key "个" or <ctrl+p></ctrl+p>	command if there is
command		early history command.
	Down direction key " \downarrow " or <ctrl+n></ctrl+n>	Display next command if
visit next		there is later history
command		command.

2.3.4 Error Messages

Every command will be executed if it passes syntax check. Otherwise it will come out error message. The following table shows some frequent errors.

Error messages	Reasons
	No this command
Unknown command	No this key word
	Parameter type error
	Parameter out of range
Command incomplete	Command is not complete
Too many parameters	Too many parameters
Ambiguous command	Command is ambiguous

2.3.5 Edit Specialities

CLI provides basic edit function. Every command supports maxum 256 characters. The following table shows how to edit.

operation	function	
	Insert character at cursor position	
Generally input	and move cursor to right if edit	
	buffer has enough space.	
Rackspace kov	Delete the character in front of	
	cursor.	
Laft direction key 4 or 20trl+R>	Cursor moves one character	
	position towards the left.	
Pight direction key \rightarrow or $-Ctrl+E$	Cursor moves one character	
Right direction key -> of <cth+f></cth+f>	position towards the right.	
Up direction key个or <ctrl+p></ctrl+p>	Display history command	
Down direction key↓or <ctrl+n></ctrl+n>	Display history command.	
	Input incomplete key words end	
	with Tab key, CLI will provide partly	
Tab kov	help.	
	If it is unique, the key word which	
	matches what you input will be	
	used and display in another row.	

If it should be parameter, or the
key word is mismatched or
matched but not unique, CLI will
use what you input and display in
another row.

3. OLT Management Configuration

3.1 Configure Outband Management

Port AUX is outband management port. So its IP is outband management IP.

3.1.1 Enter AUX Port Configuration Mode

Begin at privileged configuration mode, enter interface configuration mode as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface aux	Enter AUX interface.

3.1.2 Outband Management IP address

Begin at privileged configuration mode, configure outband management IP address and mask as the following table shows.

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	interface aux	Enter AUX interface.

Step 3a	ip address <a.b.c.d> net-mask</a.b.c.d>	Configure IP address
		and mask of AUX port.
Step 3b	no aux ip address	Reset outband
		management IP to
		default.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show aux ip address	Show outband
		management IP.
Step 6	write	Save configurations.

3.1.3 Outband Management IPv6 Address

Begin at privileged configuration mode, configure outband management IPv6 address and mask as the following table shows.

	Command	Function
Step 1	config terminal	Enter gobal
		configuration mode.
Step 2	interface aux	Enter AUX port
		configuration mode.
Step 3a	ipv6 address <x:x::x:x> [eui-64]</x:x::x:x>	Configure IPv6
		addressand prefix

		length of AUX port.
Step 3b	no aux ipv6 address	Delete IPv6 address of
		AUX port.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show aux ipv6 address	Display AUX port
		cofniguraiton.
Step 6	write	Save configuration.

3.1.4 Show AUX Port Information

Begin at privileged configuration mode, show AUX port information as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	show interface aux	Show AUX port
		information.

3.2 Configure Inband Management

This device provides inband management which can be managed from uplink port.

Begin at privileged configuration mode, configure inband management

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	vlan vlan_id	Create VLAN.
Step 3	exit	Exit to global
		configuration mode.
Step 4	interface vlan vlan_id	Enter VLAN interface
		configuration mode.
		vlan_id range is 1 $-$
		4094.
Step 5a	ip address <a.b.c.d> net-mask</a.b.c.d>	Configure IP address
		and mask.
Step 5b	no ip address <a.b.c.d></a.b.c.d>	Delete IP address and
		mask.
Step 6	exit	Exit to global
		configuration mode.
Step 7	show interface vlan vlan_id	Show VLAN information.
Step 8	write	Save configurations.

IP address and mask as the following table shows.

3.3 Configure Manangement Gateway

When OLT management IP and management server are not in the same

network segment, it needs to configure a gateway.

Begin at privileged configuration mode, configure management gateway

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	ip route 0.0.0.0/0 <a.b.c.d></a.b.c.d>	Configure management
		gateway.
Step 3	no ip route 0.0.0.0/0 <a.b.c.d></a.b.c.d>	Delete management
		gateway.
Step 4	show ip route	Show management
		gateway configuration.
Step 5	write	Save configurations.

3.4 Configure DNS

It can configure two DNS server

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	ip dns < <i>A.B.C.D</i> > {< <i>A.B.C.D</i> >}	Configure DNS
Step 3	show ip dns	Show management
		gateway.
Step 4	write	Save configurations.

4. Port Configuration

4.1 Port Configuration

4.1.1 Enter Port Configuration Mode

Begin at privileged configuration mode, input the following commands to enter port configuration mode.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	interface {interface_type	Enter interface
	slot/port}	configuration mode.

4.1.2 Enable / Disable Port

You can use these commands to enable or disable port. The ports are enabled by default. If you want a port not to transfer data, you can shutdown it.

Begin at privileged configuration mode, enable or disable ports as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.

Step 2	interface {interface_type	Enter interface
	slot/port}	configuration mode.
Step 3a	no shutdown	Enable port
Step 3b	shutdown	Disable port.
Step 4	exit	Exit to gloable
		configuration mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.3 Configure Port Description

This command is used to configure port description. There is no description by default.

Begin at privileged configuration mode, configure port description as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	description <string></string>	Configure port
		description.

Step 3b	no description	Delete description.
Step 4	exit	Exit to global
		configuration mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.4 Configure Port Duplex Mode

Duplex includes full duplex and half duplex. When it works at full duplex, port can transmit and receive data at the same time; when it works at half duplex, port can only transmit or receive data at the same time. The duplex is auto by default.

Begin at privileged configuration mode, configure port duplex mode as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	interface {interface_type	Enter interface
	slot/port}	configuration mode.
Step 3a	duplex { auto full half }	Configure port duplex
		mode.
Step 3b	no duplex	Reset duplex mode to

		default.
Step 4	exit	Exit to global configuration
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step6	write	Save configurations.

4.1.5 Configure Port Speed

When port speed mode is auto, the actual speed of port is determined by the automated negotiation result with opposite port. The speed is auto by default.

Begin at privileged configuration mode, configure port speed as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	interface {interface_type	Enter interface
	slot/port}	configuration mode.
Step 3a	speed { 10 100 1000 auto }	Configure port speed.
Step 3b	no speed	Reset port speed to
		default.
Step 4	exit	Exit to global configuration

		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.6 Configure Port Rate Limitation

Begin at privileged configuration mode, configure port rate limitation as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	line-rate {ingress egress} bps	Configure port rate
	value	limitation. Value range:
		64-1000000, it should be
		integral multiple of
		64kbps.
Step 3b	no line-rate {ingress egress}	Delete port rate limitation
		configurations.
Step 4	exit	Exit to global configuration
		mode.

Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step6	write	Save configurations.

4.1.7 Configure Port VLAN Mode

Each port has three VLAN mode, access, trunk and hybrid.

Access mode is usually used for port that connects with PC or other terminals, only one VLAN can be set up. Trunk mode is usually used for port that connects with switch; one or more VLAN can be set up. Hybrid mode can be used for port that connects with PC or switch. Default VLAN mode is hybrid.

Begin at privileged configuration mode, configure port VLAN mode as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	switchport mode { access	Configure port VLAN
	trunk hybrid}	mode.
Step 3b	no switchport mode	Reset VLAN mode to
		default.

exit	Exit to global configuration
	mode.
<pre>show interface {interface_type</pre>	Show interface
slot/port}	configurations.
write	Save configurations.
	exit <pre>show interface {interface_type slot/port} write</pre>

Notice:

All VLAN configurations will lose when you change port VLAN mode.

4.1.8 Configure Hybrid Port VLAN

Hybrid port can belong to several VLAN. It can be used to connect with switch or router, and also terminal host.

Begin at privileged configuration mode, configure hybrid port VLAN as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface configuration
	slot/port}	mode.
Step 3a	<pre>switchport hybrid vlan vlan_id</pre>	Add specific VLAN to hybrid
	{tagged untagged}	port.
Step 3b	no switchport hybrid vlan	Remove VLAN from port.
	vlan_id	
Step 4	exit	Exit to global configuration
--------	---	------------------------------
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

Notice:

You must configure PVID for the port that if it is configured untagged mode. PVID is the same as VLAN ID. Please refer to 3.1.10.

4.1.9 Configure Trunk Port VLAN

Trunk mode port can belong to several VLAN. It is usually used to connect with switches routers.

Begin at privileged configuration mode, configure trunk port VLAN as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
Step 2	interface {interface_type	Enter interface configuration
	slot/port}	
Step 3a	switchport trunk vlan vlan_id	Add specific VLAN to trunk
		port. VLAN mode is tagged.
Step 3b	no switchport trunk vlan	Remove VLAN from port.
	vlan_id	

Step 5	exit	Exit to global configuration
		mode.
Step 6	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 7	write	Save configurations.

Notice:

If PVID of trunk mode port is the same as VLAN ID, the VLAN will add to the port as untagged mode.

4.1.10 Configure Port PVID

Only under hybrid mode and trunk mode can set up PVID.

Begin at privileged configuration mode. Configure port PVID as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	switchport {hybrid trunk} pvid	Configure hybrid mode or
	vlan vlan_id	trunk mode port PVID.
Step 3b	no switchport {hybrid trunk} pvid	Reset hybrid or trunk port
		PVID to default.
Step 4	exit	Exit to global

		configuration mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.11 Configure Access Port VLAN

Only one untagged mode VLAN can be set to access port. Port's PVID is the same as VLAN ID.

Begin at privileged configuration mode, configure access port VLAN as the thable shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	switchport access vlan vlan_id	Configure access port
		VLAN.
Step 3b	no switchport access vlan	Reset access port VLAN to
		default.
Step 4	exit	Exit to global
		configuration mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface

	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.12 Configure Port Flow Control

Begin at privileged configuration mode, configure port flow control as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	interface {interface_type	Enter interface configuration
	slot/port}	mode.
Step 3a	flowcontrol on	Enable flow control function.
Step 3b	no flowcontrol	Disable flow control function.
Step 4	exit	Exit to global configuration
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface configurations.
	slot/port}	
Step 6	write	Save configurations.

4.1.13 Configure Port Broadcast Suppression

Begin at privileged configuration mode, configure port broadcast suppression as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	storm-control broadcast bps value	Configure broadcast
		suppression.
		Value range:
		64-1000000, it should
		be integral multiple of
		64kbps.
Step 3b	no storm-control broadcast	Remove broadcast
		suppression.
Step 4	exit	Exit global configuration
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.14 Configure Port Multicast Suppression

Begin at privileged configuration mode, configure port multicast suppression as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	storm-control multicast bps value	Configure multicast
		suppression.
		Value range:
		64-1000000, it should
		be integral multiple of
		64kbps.
Step 3b	no storm-control multicast	Remove multicast
		suppression.
Step 4	exit	Exit global configuration
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.15 Configure Port Unknown Unicast Suppression

Begin at privileged configuration mode, configure port unknown unicast suppression as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	storm-control unicast bps value	Configure unknown
		unicast suppression.
		Value range: 64-1000000,
		it should be integral
		multiple of 64kbps.
Step 3b	no storm-control unicast	Remove unknown unicast
		suppression.
Step 4	exit	Exit global configuration
		mode.
Step 5	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 6	write	Save configurations.

4.1.16 Configure Port Isolation

With this function, customers can add ports to a same isolation group so that these ports can be isolated among L2 and L3 steams. This will improve security of network and provide flexible networking scheme. Begin at privileged configuration mode, configure port isolation as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	switchport isolate	Add port to isolation
		group.
Step 3b	no switchport isolate	Remove port from
		isolation group.
Step 4	exit	Exit to global
		configuration mode.
Step 5a	<pre>show interface {interface_type</pre>	Show interface
	slot/port}	configurations.
Step 5b	show isolate port	Show isolation group.
Step 6	write	Save configurations.

4.1.17 Configure Port Loopback

Begin at privileged configuration mode, configure port loopback as the following table shows.

Command	Function
---------	----------

Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3	loopback [internal external	Internal means cpu inner
	outside]	loopback.
		External means cpu outer
		loopback.
		Outside means external
		data loopback.
Step 4	exit	Exit to global
		configuration mode.

Notice:

When testing port loopback function, please disable port loopback detection. Please refer to 3.1.18.

4.1.18 Configure Port Loopback Detection

Begin at privileged configuration mode, configure port loopback detection as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.

Step 2a	loopback detect enable	Enable port loopback
		detection.
Step 2b	no loopback detect	Disable port loopback
		detection.
Step 3	show loopback detect	Show port loopback
		detection status.
Step 4	exit	Exit to global
		configuration mode.

4.1.19 Configure Port Jumboframe

Begin at privileged configuration mode, configure jumboframe that the

port can pass as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	jumboframe enable	Enable jumboframe
		transmission.
		By default, switch chipset
		supports transmitting
		maximum 1536 bytes

		frame; PON chipset
		supports transmitting
		maximum 2047 bytes
		frame.
Step 3b	no jumboframe	Disable jumboframe
		transmission.
Step 4	exit	Exit to global
		configuration mode.

4.1.20 Show Port Statistics

Begin at privileged configuration mode, show port statistics as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3	show statistics	Show port statistics.
Step 4	exit	Exit to global
		configuration mode.

4.1.21 Clean Port Statistics

Begin at privileged configuration mode, clean port statistics as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>show interface {interface_type</pre>	Show port statistics.
	slot/port}	
Step 3	clean statistics	Clean port statistics.

4.1.22 Show Interface Configurations

Operation	Command	
Show interface configurations.	Show interface {interface_type	
	slot/port}	

In the system, interface gigabitethernet $0/1\sim0/x$ stands for uplink port

1~x. Interface gpon0/1~0/x stands for GPON port 1~x.

For example, display configurations of uplink port 5.

gpon-olt (config)# show interface gigabitethernet 0/5

Interface gigabitEthernet0/5's information.

GigabitEthernet0/5 current state : Down

Hardware Type is Gigabit Ethernet, Hardware address is 0:0:0:0:0:0

The Maximum Transmit Unit is 1500

Media type is twisted pair, loopback not set

Port hardware type is 1000Base-TX

Link speed type: autonegotiation, Link duplex type: autonegotiation

Current link state: Down

Current autonegotiation mode: enable

Current link speed: 1000Mbps, Current link mode: half-duplex

Flow Control: disable MDIX Mode: force

The Maximum Frame Length is 1536

Broadcast storm control: 512 fps

Multicast storm control: disable

Unknow unicast storm control: 512 fps

Ingress line rate control: no limit

Egress line rate control: no limit

mac address learn state : enable, no limit

Port priority: 0

PVID: 1

Port combo mode: null

Isolate member : yes

Port link-type: hybrid

Untagged VLAN ID: 1

Tagged VLAN ID : 100

Last 300 seconds input:0 packets0 bytesLast 300 seconds output:0 packets0 bytes

Input(total): 1113473691 packets, 4081075466 bytes 0 broadcasts, 1113473687 multicasts

Input(normal): 1113473691 packets, 4081075466 bytes 0 broadcasts, 1113473687 multicasts, 0 pauses

Input: 0 input errors, 0 runts, 0 giants, 0 throttles, 4 CRC 0 overruns, 0 aborts, 0 ignored, 0 parity errors

Output(total): 4371 packets, 351860 bytes

1280 broadcasts, 3091 multicasts, 0 pauses

Output(normal): 4371 packets, 351860 bytes

1280 broadcasts, 3091 multicasts, 0 pauses

Output: 0 output errors, 0 underruns, 0 buffer failures

0 aborts, 0 deferred, 0 collisions, 0 late collisions

0 lost carrier, 0 no carrier

4.2 Example

Configure VLAN and broadcast suppresstion of trunk mode port.

1. Requirement

Uplink port 1 of OLT connects to switch, port mode is trunk. It can pass through VLAN 20 and VLAN 100, add VLAN tag 123 to untagged streams. Rate of broadcast streams is 64bps.

2. Framework

3. Steps

(1)Enter interface configuration mode.

gpon-olt (config)# interface gigabitethernet 0/1

gpon-olt (config-if-ge0/1) #

(2) configure port mode and add VLAN

gpon-olt (config-if-ge0/1) # switchport mode trunk

gpon-olt (config-if-ge0/1) # switchport trunk vlan 20

gpon-olt (config-if-ge0/1) # switchport trunk vlan 100

- PS. The VLAN must be added first. Please refer to 5.1.1.
- (3) configure port PVID

gpon-olt (config-if-ge0/1) # switchport trunk pvid vlan 123

(4) configure port broadcast suppression

gpon-olt (config-if-ge0/1) # storm-control broadcast pps 64

5. Port Aggregation Configuration

5.1 Introduction

Port aggregation is that several ports constitute an aggregation group so that it can share responsibility for traffic load in each port. When one link is broken down, the traffic will switch to another automatically to ensure traffic is unblocked. It seems that the aggregation group is the same as a port.

In an aggregation group, member ports must have the same speed, the same duplex mode and the same basic configurations. Basic configurations contain:

 STP configurations such as STP status, link properties (e.g. p2p port), priority, cost, message format, loopdetect status, edge port or not.

(2) QoS configurations such as rate limiting, priority mark, 802.1p priority, congestion avoidance.

(3) VLAN configurations such as VLAN ID, PVID.

(4) Port link type such as trunk mode, hybrid mode and access mode.

(5) GVRP configurations such as switch status, registration type, timer value.

5.2 Port Aggregation Configuration

5.2.1 Create Static Aggregation Group

At most 4 groups can be created. You can add 4 member ports

altogether in every group and at most 4 ports will come into being aggregation at the same time.

Every group is defined as a channel group; the commands are centre on channel group.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	channel-group <1-4> mode static	Create static
		aggregation group.
Step 2b	no channel-group <1-4>	Delete static
		aggregation group.
Step 3	show channel-group summary	Show static aggregation
		group configuration.

5.2.2 Configure Load Balancing Policy of Group

Configuring load balancing policy includes source MAC, destination MAC, both source and destination MAC, source IP, destination IP, both source and destination IP. Default load balancing policy is based on source MAC.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.

Step 2	channel-group <1-4> load-balance	Specify which link is
	{smac dmac sdmac sip dip sdip	used to transmit traffic
	}	in aggregation group.
Step 3	show channel-group summary	Show aggregation
		configurations.

5.2.3 Configure Member Port of Group

Command	Function
configure terminal	Enter global
	configuration mode.
interface {interface_type	Enter interface
slot/port}	configuration mode.
channel-group <1-4>	Add current port to
	specific channel group.
no channel-group <1-4>	Delete current port
	from specific channel
	group.
exit	Exit global configuration
	mode.
show channel-group summary	Show aggregation gourp
	configurations.
	Command configure terminal interface {interface_type slot/port} channel-group <1-4> no channel-group <1-4> exit show channel-group summary

6. VLAN Configuration

6.1 VLAN Configuration

VLAN configuration mainly contains:

- Create/delete VLAN
- Configure/delete VLAN description
- Configure/delete IP address and mask of VLAN

6.1.1 Create/Delete VLAN

Begin at privileged configuration mode, create or delete VLAN as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	vlan vlan_id	Create VLAN or enter
		VLAN interface
		configuration mode.
		VLAN ID range is from 1
		to 4094.
Step 2b	no vlan vlan_id	Delete specific VLAN.
Step 3	exit	Exit to global

		configuration mode.
Step 4a	show vlan [vlan_id/all]	Show VLAN
		configurations.
		Choosing all means
		display all existed VLAN.
		And choosing <i>vlan_id</i>
		means display
		information of specific
		VLAN.
Step 4b	show vlan	Show information of all
		existed VLAN.
Step 5	write	Save configurations.

6.1.2 Configure/Delete VLAN Description

Begin at privileged configuration mode, configure or delete VLAN description as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface vlan vlan_id	Create VLAN or enter
		VLAN infterface
		configuration mode.

		VLAN ID range is from 1
		to 4094.
Step 3a	description string	Configure VLAN
		description.
Step 3b	no description	Delete VLAN
		description.
Step 4	exit	Exit to bloble
		configuration mode.
Step 5	show interface vlan vlan_id	Show VLAN interface
		information.
Step 6	write	Save configurations.

Notice:

By default, VLAN description is VLAN ID, such as " vlan 1".

6.1.3 Configure/Delete IP Address and Mask of VLAN

Begin at privileged configuration mode, configure or delete IP address and mask of VLAN as the following table shows.

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	interface vlan vlan_id	Enter VLAN interface
		configuration mode.

		VLAN ID range is from 1
		to 4094.
Step 3a	ip address <a.b.c.d> net-mask</a.b.c.d>	Configure IP address
		and mask of VLAN.
Step 3b	no ip address <a.b.c.d></a.b.c.d>	Delete IP address and
		mask of VLAN.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show interface vlan vlan_id	Show VLAN information.
Step 6	write	Save configurations.

6.2 Show VLAN Information

Input the following commands to Show VLAN information and port members.

Operation	Command
Show VLAN information	show interface vlan
Show VLAN port members	show interface vlan vlan-id

Example:

Show VLAN 100 port members

gpon-olt (config)# show in vlan 100

Vlan ID : 100

Name : vlan100

Mac address : 00:90:4c:06:a5:73

Tagged Ports : gpon0/1

Untagged Ports : ge0/8

Notice:

By default, It have one vlan on system ,do not delete and edit.

Vlan ID : 1

Name : vlan1

Mac address : 00:90:4c:06:a5:73

Tagged Ports :

Untagge	d Ports : ge0/1	ge0/2	ge0/3	ge0/4	ge0/5	ge0/6
ge0/7	ge0/8					

ge0/9 ge0/10 ge0/11 ge0/12

gpon0/1 gpon0/2 gpon0/3 gpon0/4 gpon0/5 gpon0/6 gpon0/7 gpon0/8

7. VLAN Translation/QinQ

7.1 Configure VLAN Translation/QinQ

Begin at privileged configuration mode, configure VLAN translation/QinQ as the following table shows.

	Command	Function	
Step 1	configure terminal	Enter global configuration	
		mode.	
Step 2	interface {interface_type	Enter interface	
	slot/port}	configuration mode.	
Step 3a	dot1q-tunnel vlan-maping	Configure VLAN	
	ori_vlan {any ori_vlan_pri }	translation/QinQ.	
	tra_vlani {any tra_vlan_pri}	db-tag means QinQ.	
	{db-tag one-tag}	one-tag means translation.	
Step 3b	no dot1q-tunnel vlan-maping	Delete VLAN	
	ori_vlan tra_vlanid	translation/QinQ.	
Step 4	exit	Exit to global configuration	
		mode.	
Step 5	show vlan vlan-maping	Show VLAN	
	<pre>interface {interface_type</pre>	translation/QinQ	
	slot/port}	configurations.	

Step 6	write	Save configurations.

7.2 Example

(1)VLAN translation function

Configure GE1 VLAN translation function, CVLAN is 100, priority is 1, and

translated VLAN is 200, priority is 2.

gpon-olt (config)# interface gigabitethernet 0/1

gpon-olt (config-if)#switchport hybrid vlan 100 tagged

gpon-olt (config-if)#switchport hybrid vlan 200 tagged

gpon-olt(config-if)# vlan-mapping 100 1 200 2 one-tagged

gpon-olt (config)#show vlan vlan-mapping interface gigabitethernet

0/1

(2)QinQ function

Configure GE2 QinQ function, CVLAN is 300, priority is 3, and SVLAN is 400, priority is 4.

gpon-olt (config)# interface gigabitethernet 0/2

gpon-olt (config-if)#switchport hybrid vlan 300 tagged

gpon-olt (config-if)#switchport hybrid vlan 400 tagged

gpon-olt (config-if)# vlan-mapping 300 3 400 4 db-tagged

gpon-olt (config)#show vlan vlan-mapping interface gigabitethernet

0/2

8. ARP Proxy

In order to achieve interconnection between ONU in the same PON, the devices added the ARP Proxy function.

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2	interface vlan vlan_id	Create vlan and enter
		to vlan interface
Step 3a	ip proxy-arp	Enable ARP Proxy
Step 3b	no ip proxy-arp	Disable ARP Proxy

9. MAC Address Configuration

9.1 Overview

In order to forward messages rapidly, a device need to maintain its MAC address table. MAC address table contains MAC addresses that connect with the device, ports, VLAN, type and aging status. Dynamic MAC addresses in the table are learnt by device. The proccess of learning is that: if port A receives a message, device will analyze the source MAC address (SrcMAC), and think of messages whose destination MAC address is SrcMAC can be forwarded to port A. If SrcMAC has been in the table, device will update it; if not, device will add this new address to the table.

For the messages whose destination MAC address can be found in MAC address table, they are forwarded by hardware. Otherwise, they flood to all ports. When flooded messages arrive to its destination, the destination device will respond. The device will add new MAC to the table. Then, messages with this destination MAC will be forwarded via the new table. However, when messages still can't find its destination by flood, device will discard them and tell sender destination is unreachable.

9.2 Configure MAC Address

MAC address management includes:

- Configure MAC address table
- Configure MAC address aging time

9.2.1 Configure MAC address Table

You can add static MAC address entries, delete MAC address entries or clean MAC address table.

Begin at privileged configuration mode, configure MAC address table as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	mac address-table static vlan	Add static MAC address
	<pre>vlan_id xxxx:xxxx:xxxx interface</pre>	entry.
	interface_type slot/port	
Step 2b	no mac address-table vlan vlan_id	Delete MAC address
	xxxx:xxxx:xxxx	entry.
Step 2c	mac address-table clean	Clean MAC address
		table.
Step 3	show mac address-table	Show MAC address
		table.

Step 4	write	Save configurations.

9.2.2 Configure MAC Address Aging Time

There is aging time in device. If device doesn't receive any message from other devices in aging time, it will delete the MAC address from MAC table. But for static MAC in the table, aging time is not effective.

Begin at privileged configuration mode, configure MAC address aging time as the following table shows.

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2	mac address-table agingtime	Configure MAC address	
	value	aging time, range is	
		10-100000s.	
		Os means don't aging.	
		Default is 300s.	
Step 3	show mac address-table	Show aging time.	
	agingtime		
Step 4	write	Save configurations.	

9.2.3 Clean MAC Address Table

Begin at privileged configuration mode, clean MAC address table as the

following table shows.

	Command	Function		
Step 1	configure terminal	Enter global		
		configuration mode.		
Step 2	mac address-table clean	Clean MAC address		
		table.		

9.2.4 Configure Maximum Learnt MAC Enties of Port

Begin at privileged configuration mode, configure maximum learnt MAC entries of port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3	mac-address mac-limit <0-16384>	0 means no limitation.
Step 4	exit	Exit to global
		configuration mode.

9.3 Show MAC Address Table

9.3.1 Show MAC Address Table

Begin at privileged configuration mode, show MAC address table as the

following table shows.

	Command	Function		
Step 1	configure terminal	Enter global		
		configuration mode.		
Step 2a	show mac address-table interface	Show MAC address		
	{interface_type slot/port}	table basedon		
		Ethernet port.		
Step 2b	show mac address-table vlan	Show MAC address		
	vlan_id	table based on VLAN ID.		
Step 2c	show mac address-table	Show whole MAC		
		address table.		

9.3.2 Show MAC Address Aging Time

Begin at privileged configuration mode, show MAC address aging time as the following table shows.

	Command			Function		
Step 1	configure terminal			configure terminal		Enter global
				configuration mode.		
Step 2	show mac address-table		Show MAC address			
	agingtime			aging time.		

10. Configure Port Mirroring

Port mirroring is to copy one or more ports' traffic to specific port. It is usually used for network traffic analysis and diagnosis.

The device supports 4 mirroring sessions.

10.1 Configure Mirroring Destination Port

Begin at privileged configuration mode, configure mirroring destination port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	monitor session session_number	Confire mirroring
	destination interface	destination port.
	interface_type interface_num	Session number is 1~4.
Step 3	show monitor session all	Show mirroring
		configurations.
Step 4	write	Save configurations.

10.2 Configure Mirroring Source Port

Mirroring source port is the port we want to monitor. Data that pass through the port will be copied to mirroring destination port. Begin at privileged configuration mode, configure mirroring source port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	monitor session session_number	Configure mirroring
	source interface interface_type	source port.
	start_interface_num [-	session_number is 1-4.
	<pre>end_interface_num] {both rx tx}</pre>	Both means received
		data and transmitted
		data.
		rx means received data.
		tx means transmitted
		data.
Step 3	show monitor session all	Show mirroring
		configurations.
Step 4	write	Save configurations.

10.3 Delete Port Mirroring

Begin at privileged configuration mode, delete port mirroring as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	no monitor session	Delete port mirroring.
	session_number {[destination	session_number is 1-4
	<pre>source] interface interface_type</pre>	
	slot/port}	
Step 3	show monitor session all	Show mirroring
		configurations.

Example:

Mirror data from gpon 0/1 to uplink port 1.

gpon-olt(config)#	monitor	session	1	destination	interface

gigabitethernet 0/1

gpon-olt (config)# monitor session 1 source interface gpon 0/1 both

11. IGMP Configuration

11.1 IGMP Snooping

11.1.1 Enable/Disable IGMP Snooping

IGMP snooping is disabled by default. You should enable by the following command.

Begin at privileged configuration mode, enable/disable IGMP snooping as the following table shows.

	Command				Function		
Step 1	configure terminal				Enter		global
					config	uration r	node.
Step 2a	ip igmp snooping enable			Enable	IGMP S	nooping.	
Step 2b	no ip igmp snooping			Disable	e IGMP s	nooping.	
Step 3	show	ір	igmp	snooping	Show	IGMP	snooping
	configuration			config	urations		
Step 4	write			Save c	onfigura	tions.	

11.1.2 Configure Multicast Data Forwarding Mode

Begin at privileged configuration mode, configure multicast data forwarding mode as the following table shows.

Command	Function		
---------	----------		
Step 1	configure terminal	Enter	global
--------	-------------------------------	---------------------	--------
		configuration mode	
Step 2	ip igmp snooping forward vlan	Configure multicast	data
	vlan-id mode { flood	forwarding mode.	
	forward strict-forward}		
Step 3	write	Save configurations	•

11.1.3 Configure Port Multicast VLAN

After add VLAN to the port, you should also configure multicast VLAN for multicast service. Begin at privileged configuration mode, configure port multicast VLAN as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	ip igmp snooping user-vlan	Configure port multicast
	vlan_id group-vlan vlan_id	VLAN.
	{ tagged untagged }	VLAN range is 1-4094.
Step 3b	no ip igmp snooping group-vlan	Delete port multicast
	vlan_id	VLAN.
Step 4	exit	Exit to global

		configuration mode.
Step 5	show ip igmp snooping	Show multicast VLAN.
	user-vlan	
Step 6	write	Save configurations.

11.1.4 Configure Multicast Router Port

Multicast router port is used to forward IGMP messages. Usually, uplink port is configured as multicast router port.

Begin at privileged configuration mode, configure multicast router port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	ip igmp snooping mrouter vlan	Configure multicast
	vlan-id interface {interface_type	router port.
	slot/port}	
Step 2b	no ip igmp snooping mrouter vlan	Delete multicast router
	vlan-id interface {interface_type	port.
	slot/port}	
Step 3	show ip igmp-snooping mrouter	Show multicast router
	vlan all	mode configuration.
Step 4	write	Save configurations.

11.1.5 Configure Static Multicast

0					
	Command			Function	
Step 1	configure t	erminal		Enter	global
				configuration mo	de.
Step 2a	ip igmp sn	ooping stati	c <mark>vlan</mark> vlan-id	Configure	static
	<a.b.c.d></a.b.c.d>	interface int	erface-id	multicast.	
Step 2b	no ip igm	ip snooping	static vlan	Delete static mult	icast.
	vlan-id	<a.b.c.d></a.b.c.d>	interface		
	interface-io	d			
Step 3	show	ip ig	mp-snooping	Show	IGMP
	configurat	ion		configurations.	
Step 4	write			Save configuratio	ns.

Begin at privileged configuration mode, configure static multicast as the following table shows.

11.1.6 Configure Fast Leave

Begin at privileged configuration mode, configure fast leave as the following table shows.

	Command	Function	
Step 1	configure terminal	Enter	global

		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	ip igmp snooping immediate-leave	Enable fast leave.
Step 3b	no ip igmp snooping	Disable fast leave.
	immediate-leave	
Step 4	exit	Exit to global
		configuration mode.
Step 5	show ip igmp snooping port	Show port IGMP
	information	information.
Step 6	write	Save configurations.

11.1.7 Configure Multicast Group Limit

Begin at privileged configuration mode, configure multicast group limitation as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	ip igmp snooping limit <0-1024>	Configure port multicast
		group limitation.

Step 3b	no ip igmp snooping limit	Reset	multicast	group
		limitat	ion to defa	ult.
Step 4	exit	Exit	to	global
		config	uration mo	de.
Step 5	show ip igmp snooping port	Show p	port multic	ast
	information	inform	ation.	
Step 6	write	Save co	onfiguratic	ns.

11.1.8 Configure Parameters of Special Query

Begin at privileged configuration mode, configure parameters of specific query as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	ip igmp snooping	Configure specific query
	lastmember-querycount <1-255>	count. Default is 2.
Step 2b	ip igmp snooping	Configure specific query
	lastmember-queryinterval <1-255>	interval. Default is 1s.
Step 2c	ip igmp snooping	Configure specific query
	lastmember-queryresponse	response time. Default
	<1-255>	is 1s.
Step 3	show ip igmp snooping	Show IGMP

	configuration	configurations.
Step 4	write	Save configurations.

11.1.9 Configure Parameters of General Query

Begin at privileged configuration mode, configure parameters of general query as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	ip igmp snooping	Enable or disable
	general-query-packet	general query function.
	<enable disable></enable disable>	Default is disable.
Step 2b	ip igmp snooping	Configure general query
	general-query-time <10-255>	interval. Default is 126s.
Step 3	show ip igmp snooping	Show IGMP
	configuration	configurations.
Step 4	write	Save configurations.

11.1.10 Configure Source IP of Query

Begin at privileged configuration mode, configure source IP of query message as the following table shows.

Command	Function
---------	----------

Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ip igmp snooping member-query	Configure source IP of
	source-ip <a.b.c.d></a.b.c.d>	query message. Default
		is 1.1.1.1.
Step 3	show ip igmp snooping	Show IGMP
	configuration	configurations.
Step 4	write	Save configurations.

11.1.11 Configure Multicast Member Aging Time

If the port doesn't receive any report message from member in aging time, device will delete this port from group members.

Begin at privileged configuration mode, configure muticast member aging time as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ip igmp snooping host-aging-time	Configure multicast port
	seconds	member aging time.
		Value range is 10-3600s,
		defaultis260s.
Step 3	show ip igmp snooping	Show IGMP

	configuration	configurations.
Step 4	write	Save configurations.

11.1.12 Show Multicast Gourp Information

If there is member join a group, you can use the following commands to show multicast group information.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	show ip igmp snooping vlan	Show multicast group
	[vlan-id all]	information.
Step 2b	show ip igmp snooping statistic	Show multicast statistic.

11.1.13 Configure Multcast on PON

Include the way to process unknown-mcast and igmp

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode
Step 2a	ip igmp snooping mvlan <1-4094>	Configurate the way to
	unknown-mcast [forward drop]	process mvlan and
	igmp [forward trap-to-cpu]	unknown multcast.

11.2 Example

This example introduces how to configure IGMP snooping function, including multicast VLAN, multicast router port and ONU LAN port, etc.

1. Requirement

In order to achieve multicast function, you should enable IGMP Snooping, configure multicast VLAN, multicast router port, and so on.

The requirement contains:

multicast is VLAN 100.

Multicast server connects to uplink port 1.

ONU connects to PON 1.

Client, such as a PC, connects to ONU LAN 1.

2. Framework

3. Steps

(1)Create VLAN

gpon-olt (config)# vlan 100

gpon-olt (config-vlan-100)# exit

(2)Configure multcast VLAN100

gpon-olt (config)# interface g 0/1

gpon-olt (config-if-ge0/1)# switchport hybrid vlan 100 tagged

gpon-olt (config-if-ge0/1)# exit

gpon-olt (config)# inter gpon 0/1

gpon-olt (config-pon-0/1)# switchport hybrid vlan 100 tagged

gpon-olt(config-pon-0/1)# ip igmp snooping user-vlan 100 group-vlan

100 tagged

gpon-olt(config-pon-0/1)# exit

(3) Enable IGMP Snooping

gpon-olt(config)# ip igmp snooping enable

(4)Configure the G0/1 to multcast router port

gpon-olt(config)# ip igmp snooping mrouter vlan 100 interface gigabitethernet 0/1

(5)Configure the multcast and igmp rule

gpon-olt(config)# ip igmp snooping mvlan 100 unknown-mcast drop

igmp trap-to-cpu

(6)Configure the onu

gpon-olt(config)# inter gpon 0/1

gpon-olt(config-pon-0/1)# onu add 1 profile 1GE sn GPON0000031

gpon-olt(config-pon-0/1)# onu 1 tcont 1

gpon-olt(config-pon-0/1)# onu 1 gemport 1 tcont 1

gpon-olt(config-pon-0/1)# onu 1 service 1 gemport 1 vlan 100

gpon-olt(config-pon-0/1)# onu 1 service-port 1 gemport 1 uservlan

100 vlan 100

gpon-olt(config-pon-0/1)# onu 1 portvlan eth 1 mode hybrid def_vlan 100

gpon-olt(config)#ip igmp snooping mvlan 100

gpon-olt(config)#ip igmp snooping mvlan 100 receive-port
gpon-onu_1/1/2:1 vport 1

gpon-olt(config)#ip igmp snooping mvlan 100 group 224.1.1.1 to 224.1.1.10 static-port gpon-onu_1/1/2:1 vport 1

12. ACL Configuration

12.1 Overview

In order to filter data packages, network equipments need to setup a series of rules for identifying what need to be filtered. Only matched with the rules the data packages can be filtered. ACL can achieve this function. Matched conditions of ACL rules can be source address, destination address, Ethernet type, VLAN, protocol port, and so on.

These ACL rules also can be used in other situations, such as classification of stream in QoS. An ACL rule may contain one or several sub-rules, which have different matched conditions.

This device supports the following types of ACL.

- IP Standard ACL.
- IP Extended ACL.
- ACL based on MAC address
- ACL based on port binding.
- ACL based on QoS.

Limitation of each ACL rule:

ACL type	ACL index	Maxium rules
IP Standard ACL	0-999	1000
IP Extended ACL	1000-1999	1000

ACL based on MAC address	2000-2999	1000
ACL based on port binding	5000-5999	1000
ACL based on QoS	6000-6999	1000

12.2 ACL Confiuration

ACL configuration mainly includes:

- IP Standard ACL.
- IP Extended ACL.
- ACL based on MAC address
- ACL based on port binding.
- ACL based on QoS.
- ACL rule apply to port.

12.2.1 IP Standard ACL

Begin at privileged configuration mode, configure IP standard ACL as the

following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	access-list access-list-index	Enter ACL configuration
		mode.
		access-list-number is ACL

		index. range:0-999.
Step 3a	subset ip (permit deny)	Configure ACL rule.
	<a.b.c.d> [net-mask]</a.b.c.d>	<a.b.c.d>: define based on</a.b.c.d>
	subset ip (permit deny) host	source IP address and mask
	<a.b.c.d></a.b.c.d>	ACL rule.
	subset ip [permit deny] any	Host: define based on
		single IP address ACL rule.
		Any: define based on any
		source IP address ACL rule.
Step 3b	No access-list access-list-index	Delete the ACL
Step 4	exit	Exit to global configuration
		mode.
Step 5	show access-list	Show ACL configurations.
	[access-list-number all]	
Step 6	write	Save configurations.

12.2.2 IP Extended ACL

Begin at privileged configuration mode, configure IP extended ACL as the following table shows.

	Command	Functi	on	
Step 1	configure terminal	Enter	global	configration

		mode.
Step 2	access-list access-list-index	Enter ACL configuration
		mode.
		access-list-number is ACL
		index. range:1000-1999.
Step 3a	subset protocol {deny permit}	Configure IP extended ACL
	protocol { <a.b.c.d> net-mask</a.b.c.d>	rule.
	{ <a.b.c.d> net-mask host</a.b.c.d>	Parameter <i>protocol</i> should
	<a.b.c.d> / any }[match {dscp</a.b.c.d>	be icmp, igmp, igrp, ip,
	priority precedence priority tos	ospf, pim, tcp, or udp, etc.
	<pre>priority}] [set {dscp priority </pre>	it also can be replaced by
	<pre>precedence priority tos priority}]</pre>	protocol code 0~255.
Step 3b	no access-list access-list-index	Delete ACL
Step 4	exit	Exit global configuration
		mode.
Step 5	show access-list	Show ACL configurations.
	[access-list-number all]	
Step 6	write	Save configurations.

12.2.3 ACL Based on MAC Address

Begin at privileged configuration mode, configure ACL based on MAC address as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	access-list access-list-number	Enter ACL configuration
		mode.
		access-list-number is ACL
		index. range:2000-2999.
Step 3a	subset ethernet [permit deny]	Configure IP extended ACL
	[source] <xx:xx:xx:xx:xx></xx:xx:xx:xx:xx>	rule.
	<xx:xx:xx:xx:xx> {[dest]</xx:xx:xx:xx:xx>	
	<xx:xx:xx:xx:xx:xx></xx:xx:xx:xx:xx:xx>	
	<xx:xx:xx:xx:xx>}*1 {[vlan]</xx:xx:xx:xx:xx>	
	<1-4094>}*1 {[cos] <0-7>}*1	
	{[ethernet-type] <xxxx> <xxxx></xxxx></xxxx>	
Step 3b	no access-list access-list-index	Delete ACL
Step 4	exit	Exit to global configuration
		mode.
Step 5	show access-list	Show ACL configurations.
	[access-list-number all]	
Step 6	write	Save configurations.

12.2.4 ACL Based on Port Binding

This type of ACL includes the other types.

Begin at privileged configuration mode, configure ACL based on port binding as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	access-list access-list-number	Enter ACL configuration
		mode.
		access-list-number is ACL
		index. range:5000-5999;
Step 3a	subset port-business	Permit:Permit data stream
	[permit deny] {src-ip dest-ip	which match the rule
	protocol tos-dscp src-mac	passing through.
	dest-mac vlan cos	Deny:Do not permit data
	ethernet-type src-port	stream which match the
	dest-port}	rule passing through.
		src-ip : source IP address
		dest-ip:destination IP
		address
		protocol:IP protocol type

	tos-dscp:IP priority
	src-mac:source MAC
	address
	dest-mac:destination MAC
	address
	vlan:VLAN IAD
	cos:802.1p priority
	ethernet-type:ethernet
	type
	src-port:Layer 4 source port
	dest-port:Layer 4
	destination port
no access-list access-list-index	Delete ACL
exit	Exit to global configuration
	mode.
show access-list access-list-number	Show ACL configurations.
write	Save configurations.
	no access-list access-list-index exit show access-list access-list-number write

12.2.5 ACL Based on QoS

Begin at privileged configuration mode, configure ACL based on QoS as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	access-list access-list-number	Enter ACL configuration
		mode.
		access-list-number is ACL
		index. range:6000-6999.
Step 3a	subset qos <0-8> <0-7> <1-12>	<0-8>: output priority
		<0-7>: output queue
		<1-12>: rule priority
Step 3b	subset qos {src-ip dest-ip	src-ip : source IP address
	protocol tos-dscp src-mac	dest-ip: destination IP
	dest-mac vlan cos	address
	ethernet-type src-port	protocol: IP protocol type
	dest-port}	tos-dscp: IP priority
		src-mac: source MAC
		address
		dest-mac: destination MAC
		address
		vlan: VLAN ID
		cos:802.1p priority
		ethernet-type: Ethernet

		type
		src-port:Layer 4 source port
		dest-port:Layer 4
		destination port
Step 3c	no access-list access-list-number	Deleting ACL rule. Only the
		ACL that have not been
		applied can be deleted.
Step 4	exit	Exit to global configuration
		mode.
Step 5	show access-list access-list-number	Show ACL configurations.
Step 6	write	Save configurations.

12.2.6 ACL Rule Apply to Port

Begin at privileged configuration mode, apply ACL rule to port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter globle configuration
		mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	ip access-group	Apply ACL rule to port.
	access-list-number in	

Step 3b	no ip access-group		Delete ACL rule from port.
	access-list-number in		
Step 4	exit		Exit to glogbal configuration
		1	mode.
Step 5	show ac	cess-list	Show ACL configurations.
	access-list-number		
Step 6	write		Save configurations.

12.3 Example

(1)Deny specific IP address packets passing through

PON1 denies packets which source IP is 192.168.100.10 passing through.

gpon-olt(config)# access-list 5000

gpon-olt(config-bsn-acl-5000)# subset port-business deny src-ip

 $192.168.100.10\ 255.255.255.255$

gpon-olt(config-bsn-acl-5000)# exit

gpon-olt(config)# interface gpon 0/1

gpon-olt(config-pon-0/1)# ip access-group 5000 in

(2)Permit specific MAC address packets passing through

PON1 permits IP packets which source MAC is b8:97:5a:72:37:8d passing through.

gpon-olt(config)#access-list 2000

gpon-olt(config-eth-acl-2000)# subset ethernet deny ethernet-type

0800 ffff

gpon-olt(config-eth-acl-2000)#exit

gpon-olt(config)# access-list 2001

gpon-olt(config-eth-acl-2001)# subset ethernet permit source

b8:97:5a:72:37:8d ff:ff:ff:ff:ff:ff

gpon-olt(config-eth-acl-2001) # exit

gpon-olt(config)# interface gpon 0/1

gpon-olt(config-pon-0/1)# ip access-group 2000 in

gpon-olt(config-pon-0/1)# ip access-group 2001 in

gpon-olt(config-pon-0/1)#exit

13. QoS Configuration

13.1 Configure Queue Scheduling Mode

Queue scheduling mode contains strict priority, weighted round robin and hybrid mode. This device supports 8 queues altogether.

Begin at privileged configuration mode, configure queue scheduling mode as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	queue-scheduler strict-priority	Configure strict priority
		scheduling mode.
Step 2b	queue-scheduler wrr [queue0	Configure weighted
	queue1 queue2 queue3 queue4	round robin scheduling
	queue5 queue6 queue7]	mode.
		Queuex is weight of
		queue x, range is 1-127.
		By default, weights of
		queue 0~7 are 1, 1, 2, 2,
		4, 4, 8, 8.
Step 2c	queue-scheduler sp-wrr [queue0	Configure hybrid

	queue1 queue2 queue3 queue4	scheduling mode.
	queue5 queue6 queue7]	Queuex is weight of
		queue x, range is 0-127.
		If it is set to be 0, the
		queue is strict priority
		queue.
		By default, weights of
		queue 0~7 are 1, 1, 2, 2,
		4, 4, 8, 8.
Step 3	show queue-scheduler	Show queue scheduling
		configurations.
Step 4	write	Save configurations.

13.2 Configure Queue Mapping

Begin at privileged configuration mode, configure queue mapping as the

following table shows.

	Command	Function	
Step 1	configure terminal	Enter	global
		configuration mo	de.
Step 2	queue-scheduler tc priority queue	Configure mappir	ıg
	queue	relation between	
		queues and priori	ty.

		By default, priority 0~7	
		maps to queue 0~7	
		respectively.	
Step 3	show queue-scheduler priority	Show queue mapping.	
	mapping		
Step 4	write	Save configurations.	

14. STP Configuration

14.1 STP Default Settings

Speciality	Default value
Enable status	STP disabled
Bridge priority	32768
STP port priority	128
STP port cost	10-Gigabit Ethernet :2
	Gigabit Ethernet :4
	Fast Ethernet :19
	Ethernet :100
Hello time	2s
Forward delay time	15s
Maxmum aging time	20s
Mode	RSTP

STP default settings:

14.2 Cofigure STP

STP configurations mainly contain:

- Enable device's STP function.
- Enable port's STP function.

- Configure STP mode.
- Configure bridge priority of device.
- Configure forward delay of device.
- Configure hello time of device.
- Configure max age of designated device.
- Configure priority of designated port.
- Configure path cost of designated port.

14.2.1 Enable STP Function

Begin at privileged configuration mode, enable device's STP function as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2a	spanning-tree on	Enable device's STP
		function.
		By default, STP function is
		disabled.
Step 2b	no spanning-tree	Disable device's STP
		function.
Step 3	show spanning-tree	Show STP configurations.
Step 4	write	Save configurations.

14.2.2 Enable Port STP

In order to work flexibly, you can disable some specific ports' STP function.

Begin at privileged configuration mode, enable port's STP function as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	spanning-tree on	Enable port's STP
		function.
Step 3b	no spanning-tree on	Disable port's STP
		function.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show spanning-tree interface	Show port's STP
	{interface_type slot/port}	configurations.
Step 6	write	Save configurations.

14.2.3 Configure Bridge Priority

Device's bridge priority decides if it will be selected as root of spanning

tree.

Begin at privileged configuration mode, configure device's bridge prority as the following table shows.

		-
	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	spanning-tree priority	Configure device's
	bridge-priority	bridge priority.
		Priority range is
		0~65535, default is
		32768.
Step 3	show spanning-tree	Show STP
		configurations.
Step 4	write	Save configurations.

14.2.4 Configure Forward Delay

Network will recompute spanning tree when there is link down in network. Construction of spanning tree will be changed too. But the new STP PDU can't go the rounds of network. In this case, a temporary loop will come out if the new root port and designated port forward data immediately. So, STP adopts state transition mechanism. Before re-forwarding data, root port and designated port will undergo an intermediate state. After forward delay time out in the intermediate state, the new STP PDU have gone the rounds of network, then root port and designated port begin to forward data.

Begin at privileged configuration mode, configure device's forward delay as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	spanning-tree forward-time	Configure device's
	seconds	forward delay.
		bridge-priority range is
		4~30, default is 15.
Step 3	show spanning-tree	Show STP
		configurations.
Step 4	write	Save configurations.

Forward Delay has something to do with that how big the network is. Generally, the bigger the network, the longer forward delay should be configured. If forward delay is too small, there may be temporary redundant path; while it is too big, network will take more time to resume connectivity. We suggest using default value if you have no idea about this.

Notice:

Hello time, forward delay and maximum age are time parameters of root device. These three parameters should meet the following formula, otherwise, the network will not stable.

2 × (forward-delay -1) >= maximum-agemaximum-age >= 2 × (hello + 1)

The unit of "1" in formula is second.

14.2.5 Configure Hello Time

Network Bridge will send hello message to other surrounding network bridge at regular intervals for verifying link connectivity. A suitable hello time can ensure a device find link failure in time and not occupy more network resource. If hello time is too big, device will be in mistake for link failure when loss packets. Then network device recomputes spanning tree. While if too small, network device sends repeated STP PDU frequently. This will increase device's load and waste network resource.

Begin at privileged configuration mode, configure device's hello time as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.

Step 2	spanning-tree hellotime seconds	Configure device's hello
		time.
		Hello time range is
		1~10, default is 2.
Step 3	show spanning-tree	Show STP
		configurations.
Step 4	write	Save configurations.

14.2.6 Configure Max Aging Time

Max age time is maximum life time of configuration message. When message age is biger than maximum age, configuration message will be discarded.

Begin at privileged configuration mode, configure maximum age as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	spanning-tree max-age seconds	Configure maximum age
		of device.
		max age range is 6-40,
		default is 20.
Step 3	show spanning-tree	Show STP

		configurations.
Step 4	write	Save configurations.

14.2.7 Configure Priority of Designated Port

Port priority decides whether it can be selected as root port or not. On equal conditions, the higher priority port will be selected as root port. Generally, the priority value is smaller, the port has higher priority. If all ports' priority value are the same, their priority decided by their port index.

Begin at privileged configuration mode, configure priority of designated port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3	spanning-tree port-priority priority	Configure priority of
		designated port.
		priority range is 1-255,
		default is 128.
Step 4	exit	Exit to global
		configuration mode.

Step 5	show spanning-tree interface	Show port STP
	{interface_type slot/port}	configurations.
Step 6	write	Save configurations.

14.2.8 Configure Path Cost of Designated Port

Path Cost is related to the speed of the link connected to the port. On the STP switch, a port can be configured with different path costs.

Begin at privileged configuration mode, configure path cost of designated port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3	spanning-tree cost value	Configure path cost of
		designated port.
		Path cost range is
		1-65535, default is auto.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show spanning-tree interface	Show port STP
	{interface_type slot/port}	configurations.

Step 6	write	Save configurations.
Step 0	wille	Save configurations.

14.2.9 Configure Edge Port

The port which connects with terminal host is Edge Port. In process of spanning tree recomputation, edge port can transfer to forwarding status derectly so that it can reduce transfer time. Because RSTP can't detect whether the port is edge port or not, if the port doesn't connect with switch, you'd better configure it as edge port. But when the port connects with a switch, RSTP can detect and configure it as non-edge port. By default, all ports are configured as non-edged port.

Begin at privileged configuration mode, configure edge port as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type slot/port}</pre>	Enter interface
		configuration mode.
Step 3a	spanning-tree operedge	Configure port as an
		edge port.
Step 3b	no spanning-tree operedge	Reset spanning tree
		port to default.
Step 4	exit	Exit to global

		configuration mode.
Step 5	show spanning-tree interface	Show port STP
	{interface_type slot/port}	configurations.
Step 6	write	Save configurations.

14.2.10 Configure Point to Point Mode

Point to point mode is usually the link which connects with switches. For the ports connected with the point-to-point link, upon some port role conditions met, they can transit to forwarding state fast through transmitting synchronization packet, thereby reducing the unnecessary forwarding delay.

Begin at privileged configuration mode, configure port to connect with point to point link as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	<pre>interface {interface_type</pre>	Enter interface
	slot/port}	configuration mode.
Step 3a	spanning-tree point-to-point	Configure a port as point
		to point port.
		By default, all ports are
		configured as point to
		point ports.
---------	---------------------------------	----------------------------
Step 3b	no spanning-tree point-to-point	Not to configure a port as
		point to point port.
Step 4	exit	Exit to global
		configuration mode.
Step 5	show spanning-tree interface	Show port STP
	{interface_type slot/port}	configurations.
Step 6	write	Save configurations.

14.3 Show STP Information

After configuring, use the following commands to show STP information.

Command	Function
show spanning-tree	Show STP configurations
	and running status.
show spanning-tree interface	Show STP configurations
{interface_type slot/port}	and running status of a
	port.

15. DHCP Management Configuration

15.1 Configure DHCP Server

Now, larger and larger number of IP address are needed to allocate .DHCP (Dynamic Host configuration Protocol) is created to solve this problem .It concludes DHCP Server and DHCP Client.Requested by client, IP address are allocated by the server.Configure DHCP Server as the following table show:

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2a	dhcp-server [enable disable]	Disable the DHCP server
		function
Step 2b	dhcp-server [dns1 dns2	Configure DHCP's DNS and
	dns3 wins] <a.b.c.d></a.b.c.d>	WINS Server
Step 2c	dhcp-server startip A.B.C.D	Configure DHCP IP address
	endip A.B.C.D	pool
Step 2d	dhcp-server subnet A.B.C.D	Configure DHCP mask
Step 2e	dhcp-server gateway A.B.C.D	Configure DHCP gateway
Step 2f	dhcp-server interface vlan	Add the VLAN to the DHCP
	<1-4095>	Server (If want DHCP server

		successful, need to
		configure the vlan interface
		IP address)
Step 2g	dhcp-server leasetime leasetime	Configure IP address
		leasetime
Step 3a	show dhcp-server	Show DHCP server
		configuration
Step 3d	show dhcp-server lease	Show DHCP Server allocate
		IP address
Step 4	copy running-config	Save the configuration
	startup-config	

15.2 Configure DHCP Relay

Because the DHCP receiving need to broadcast, so the server and the client should be in the same network. The DHCP relay can save this issue effective. Configure DHCP relay as the following table show:

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	interface vlan vlan_id	Add VLAN and enter VLAN

		interface configuration
		vlan_id(1—4094);
Step 3	dhcp relay A.B.C.D	Configure the DHP relay
		server IP address ,and
		enable the DHCP relay
Step 3b	no dhcp relay A.B.C.D	Delete DHCP relay
Step 4	exit	Exit to global configuration
		mode
Step 5	show dhcp-relay configure	Show the DHCP relay
		configuration _°
Step 6	copy running-config	Save the configuration
	startup-config	

2. Multiple DHCP relay configuration:

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	dhcp-server group	Add a DHCP server group,
	<groupname></groupname>	and enter group
		configuration mode.
Step 3a	dhcp-server A.B.C.D	Add the DHCP server to the
		group.

Step 3b	no dhcp-server A.B.C.D	Delete DHCP server
Step 4	exit	Exit to the global
		configuration mode
Step 5	interface vlan vlan_id	Add a VLAN and enter to
		VLAN interface
		configuration
		vlan_id(1—4094);
Step 6a	dhcp relay server-select	Select DHCP server
	<groupname></groupname>	group 。
Step 6b	no dhcp relay server-select	Delete the DHCP server
	<groupname></groupname>	group。
Step 7	exit	Exit to global configuration
		mode
Step 8	show dhcp-relay configure	Sow DHCP relay
		configuration.
Step 9	copy running-config	Save the configuration.
	startup-config	

15.3 Configure DHCP Snooping

To prevent the DHCP message attacking and protect you network to get a useful IP address.DHCP Snooping is used for do that.Configure DHCP

Snooping as the following table show:

A.DHCP Snooping enable/disable

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	dhcp-snooping	Enable/disable DHCP
	(enable disable)	Snoopin. (DHCP Snooping
		enable, can not open dhcp
		server and dhcp relay)
Step 3a	dhcp-snooping vlan <1-4095>	Configure DHCP Snooping
		vlan list
Step3b	no dhcp-snooping vlan	Delete DHCP Snooping vlan
	<1-4095>	list
Step 4	exit	Exit to global configuration
		mode.
Step 5	show dhcp-snooping	Show DHCP Snooping
	configuration	configuration _°
Step 6	copy running-config	Save configuration.
	startup-config	

B.Configure DHCP Snooping option82

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	dhcp-snooping information	Enable/disable DHCP
	option (enable disable)	Snooping option82.
Step 3	dhcp-snooping information	Deil with the message with
	strategy (drop keep replease)	option82, drop、keep and
		replace.
Step 4	exit	Exit to global configuration
		mode.
Step 5	show dhcp-snooping	Show DHCP Snooping
	configuration	configuration.
Step 6	copy running-config	Save configuration.
	startup-config	

C.Configure DHCP Snooping binding list

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	dhcp-snooping binding	Add the static DHCP
	HHHH:HHHH:HHHH vlan	binding list.

	<1-4095> A.B.C.D interface	
	<pre>{interface_type slot/port} lease</pre>	
	<60-1000000>	
	no dhcp-snooping binding	Delete MAC binding list.
	нннн:нннн:нннн	
	no dhcp-snooping binding	Delete DHCP binding
	(all static dynamic)	list.can delete all、static、
		dynamic .
Step 3	dhcp-snooping binding	Configure the biding list
	delete-time <1-3600>	aging time and delete time.
Step 4	exit	Exit to global configuration
		mode
Step 5	show dhcp-snooping	Show DHCP Snooping
	configuration	configuration.
Step 6	copy running-config	Save configuration.
	startup-config	

D.Configure DHCP Snooping port

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.

Step 2	<pre>interface {interface_type</pre>	Enter the interface
	slot/port}	configuration
Step 3a	dhcp-snooping (trust untrust)	Configure the trust/untrust
		port. All the port are
		untrust in default.
Step 3b	dhcp-snooping information	Configure the option82的
	circuit-id string <string></string>	circuit-id value.
Step 3c	no dhcp-snooping information	Delete the option82
	circuit-id string <string></string>	circuit-id value 🧳 and load
		default.
Step 3d	dhcp-snooping information	Configure
	remote-id string <string></string>	option82remote-id value.
Step 3e	no dhcp-snooping information	Delete option82 remote-id
	remote-idstring <string></string>	value, load default value.
Step 3f	dhcp-snooping limit rate	Configure the port max
	<0-4096>	speed of receiving the
		DHCP packet. It doesn't
		limit by default.
Step 3e	no dhcp-snooping limit rate	No limit speed.
Step 4	exit	Exit to the global
		configuration mode
Step 5a	dhcp-snooping errdisable	Configure whether the port

	recovery	(enab	le disable)	get d	own whe	en the	DHCP
				packe	treceivin	g	speed
				larger	then	the	limit
				speed	.The	defau	ult is
				disabl	e.		
Step 5b	dhcp-snoc	oping	errdisable	Config	gure the	time	when
	recovery i	nterval	<3-3600>	the	port red	covery	after
				gettin	g down		
Step 6	show dhc	p-snoop	ing	Show	DHCP Sn	ooping	5
	configurat	ion		config	guration.		
Step 7	сору		running-config	Save	configura	tion.	
	startup-co	onfig					

16. L3 Route Configuration

16.1 L3 Route Configuration

16.1.1 Hardware Router Table

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	show I3 defip route	Show hardware subnet
		routing information.
Step 2b	show I3 hostroute	Show hardware host
		routing information.
Step 2c	show I3 interface	Show interface
		information

16.1.2 Static Route

Static route is usually used in a simple network. This device supports maximum 512 static route rules.

	Command				nction
Step 1	configure terminal			En	ter global
				CO	nfiguration mode.
Step 2a	ip rou	ute A.B.C	C.D A.B.C	. <i>D</i> Ad	d static route rule.

	A.B.C.D	
Step 2b	ip route A.B.C.D/M A.B.C.D	Add static route rule.
Step 3a	no ip route A.B.C.D A.B.C.D	Delete static route rule.
	A.B.C.D	
Setp 3b	no ip route A.B.C.D/M A.B.C.D	Delete static route rule.
Step 4	show ip route	Show route rules.

16.1.3 Key Chain

Key management is a method of controlling the authentication key used by a routing protocol. Not all protocols can use key management. The authentication key is available for EIGRP and RIP version 2. Authentication must be enabled before managing the authentication key. See the appropriate protocol section for how to enable authentication for this protocol. To manage an authentication key, you need to define a keychain that identifies the keys that belong to the keychain. Each key has its own key identifier, which is stored locally. The key identifier and the combination associated with the message uniquely identify the use of the authentication algorithm and the MD5 authentication key. Multiple keys can be configured. Only one authentication package is sent, no matter how many valid keys exist. The software checks key figures from lowest to highest order and uses the first valid key it encounters.

Command	Function
---------	----------

Step 1	configure terminal	Enter global
		configuration mode.
Step 2	key chain key_chain_name	Configure the key chain
		and enter the key chain
		configuration mode.
Step 3	key key_number	Configure the key
		identifier,key_number
		range 0- 2147483647。
Step 4	key-string < key_string>	Configure the
		authentication key.
Step 5	exit	Exit to the global
		configuration mode.
Step 6	write	Save configuration.

To remove the key chain entry, use the command **no key chain**;To delete a key identifier, use the command **no key**;To delete the key, use the command **no key-string**.

16.2 RIP

16.2.1 RIP Overview

RIP (routing information protocol) is a simple internal gateway protocol. RIP is a routing protocol based on D-V algorithm. Hop Count is used to represent metrics. The hop count is the number of routers a datagram must pass to reach the destination. RIP considers that the path with the lowest number of hops is the optimal path, and the maximum number of hops supported is 15. If 16RIP is set, the network is unreachable. Therefore, RIP can only be adapted to small networks.

16.2.2 RIP Configuration

RIP configuration includes:

- Configure RIP basic parameters
- Configure RIP authentication
- Configure RIP Split Horizon

16.2.2.1 RIP Basic Configuration

To configure RIP, you enable RIP routing for a network and optionally configure other parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure RIP:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router rip	Enable a RIP routing
		process, and enter
		router configuration

				mode.
Step 3	network	ip-address/ma	sklen	Associate a network
				with a RIP routing
				process. You can specify
				multiple network
				commands. RIP routing
				updates are sent and
				received through
				interfaces only on these
				networks.
Step 4	neighbor	rip-address		(Optional) Define a
				neighboring router with
				which to exchange
				routing information.
				This step allows routing
				updates from RIP
				(normally a broadcast
				protocol) to reach
				nonbroadcast networks.
Step 5	offset-list	access-list	number	(Optional) Apply an
	name)		(in out)	offset list to routing
	metric<0-	16> vlan <1-4094	metrics to increase	

					incoming and outgoing
					metrics to routes
					learned through RIP.
					You can limit the offset
					list with an access list or
					an interface.
Step 6	timers	basic	update	timeout	(Optional) Adjust
	garbage				routing protocol timers.
					Valid ranges for all
					timers are 0 to
					4294967295 seconds.
					•update—Time
					between sending
					routing updates. The
					default is 30 seconds.
					•invalid—Time after
					which a route is
					declared invalid. The
					default is 180 seconds.
					•holddown—Time
					before a route is
					removed from the

		routing table. The
		default is 180 seconds.
		•flush—Amount of time
		for which routing
		updates are postponed.
		The default is 240
		seconds.
Step 7	version(1 2)	(Optional) Configure the
		switch to receive and
		send only RIP Version 1
		or RIP version 2 packets.
		By default, the switch
		receives Version 1 and 2
		but sends only Version
		1.
		You can also use the
		interface commands ip
		rip {send receive}
		version 1 2 1 2} to
		control what versions
		are used for sending
		and receiving on

		interfaces.
Step 8	Redistribute	(Optional) redistribute
	(kernel connected ospf static)	routes from kernel 🔪
	{metric <0-16>}	connect, ospf and static.
Step 9	distance<1-255>	(Optional) Configure RIP
		protocol distance.
		Default 120.
Step 10	exit	Return to privileged
		EXEC mode.
Step 11	show ip rip status	Showing RIP current
		status. About the RIP
		timer, filter
		list,version,interface
		information.
Step 12	show ip rip	Showing RIP route
		information.
Step 13	write	Save configurations.

If you want to disable RIP routing, use the command **no router rip** in global configuration mode.

If you want to cancel the interface RIP process, you can use the command **no network ip-address/masklen** in RIP configuration mode.

If you want to restore the default timer value, you can use the command

no timers basic in RIP configuration mode.

16.2.2.2 RIPv2 Authentication

RIP version 1 does not support authentication. If you are sending and receiving RIP Version 2 packets, you can enable RIP authentication on an interface. The key chain determines the set of keys that can be used on the interface. If a key chain is not configured, no authentication is performed, not even the default.

The OLT supports two modes of authentication on interfaces for which RIP authentication is enabled: plain text and MD5. The default is plain text.

Beginning in privileged EXEC mode, follow these steps to configure RIP authentication on an interface:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	Interface vlan vlan_id	Enter interface
		configuration mode,
		and specify the
		interface to configure.
Step 3	ip rip authentication mode (md5	Configure the interface
	text)	to use plain text

	authentication (the
	default) or MD5 digest
	authentication.
ip rip authentication key-chain<	Enable RIP
line>	authentication for MD5.
<pre>ip rip authentication string< line></pre>	Enable RIP
	authentication for plain
	text.
exit	Return to privileged
	EXEC mode.
show ip rip status	Showing RIP current
	status. About the RIP
	timer, filter
	list,version,interface
	information.
show ip rip	Showing RIP route
	information.
write	Save configurations.
	<pre>ip rip authentication key-chain< line> ip rip authentication string< line> exit show ip rip status show ip rip</pre>

To restore clear text authentication, use the command **no ip rip authentication mode** interface configuration. To prevent authentication, use the command **no ip rip authentication key-chain** interface configuration.

16.2.2.3 Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature usually optimizes communication among multiple routers, especially when links are broken.

Beginning in privileged EXEC mode, follow these steps to set an interface to configuring split horizon on the interface:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	Interface vlan vlan_id	Enter interface
		configuration mode,
		and specify the
		interface to configure.
Step 3	ip rip split-horizon	Enable split horizon.
		Default enable.
Step 5	exit	Return to privileged

		EXEC mode.
Step 6	show ip rip status	Showing RIP current
		status. About the RIP
		timer, filter
		list,version,interface
		information.
Step 7	show ip rip	Showing RIP route
		information.
Step 8	write	Save configurations.
		•

To disable split horizon, use the **no ip rip split-horizon** interface configuration command.

16.2.2.4 RIP v1/2 Compatible Configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	Interface vlan vlan_id	Enter interface
		configuration mode,
		and specify the
		interface to configure.
Step 3	ip rip receive version (1 2) (1 2)	Configure receive v1 or

		v2 or v1 and v2.
Step 4	ip rip send version (1 2) (1 2)	Configure send v1 or v2
		or v1 and v2.
Step 5	exit	Return to privileged
		EXEC mode.
Step 6	show ip rip status	Showing RIP current
		status. About the RIP
		timer, filter
		list,version,interface
		information.
Step 7	show ip rip	Showing RIP route
		information.
Step 8	write	Save configurations.

16.2.3 RIP Configuration Example

16.2.3.1 RIP General Configuration

1. Networking requirements

A small company office network needs to be able to communicate between any two nodes, and the network size is relatively small. Need equipment

Automatically adapt to network topology changes and reduce manual

maintenance workload.

According to the user requirements and the user network environment, the RIP routing protocol is selected to implement interworking between user networks.

2. Networking topology

Configuration:

Switch A :VLAN 1 192.168.1.1, VLAN 2 192.168.2.1

interface vlan 1

ip address 192.168.1.1/24

exit

interface vlan 2

ip address 192.168.2.1/24

exit

interface gigabitethernet 0/1

switchport access vlan 1

interface gigabitethernet 0/2

switchport access vlan 2

Enable RIP and run RIP in the VLAN interface

network 192.168.1.0/24

network 192.168.2.0/24

Switch B:(Similar to switch A)

interface vlan 1

ip address 192.168.1.2/24

exit

interface vlan 11

ip address 192.168.11.2/24

exit

interface gigabitethernet 0/1

switchport access vlan 1

interface gigabitethernet 0/2

switchport access vlan 11

router rip

network 192.168.11.0/24

network 192.168.1.0/24

Switch C:

interface vlan 1

ip address 192.168.21.3/24

exit

interface vlan 2

ip address 192.168.2.3/24

exit

interface gigabitethernet 0/1

switchport access vlan 21

interface gigabitethernet 0/2

switchport access vlan 2

router rip

network 192.168.21.0/24

network 192.168.2.0/24

16.2.3.2 RIP Offset-list Configuration

Connect switch A and switch B

Switch A:

configure terminal

ip access-list 5 permit 192.168.3.0 0.0.0.0

interface vlan 1

ip adderss 192.168.1.1/24

exit

interface vlan 2

ip adderss 192.168.2.1/24

exit

router rip

offset-list 5 in 3 vlan 1 //offset-list check the entry notification and add 3 to the item metrics that satisfy the list.networke

192.168.1.0/24

networke 192.168.2.0/24

Switch B:

configure terminal

access-list 5 permit 192.168.3.0 0.0.0.0 // Define the access list to

determine which routes to match

interface vlan 1

ip adderss 192.168.1.2/24

interface vlan 3

ip adderss 192.168.3.1/24

exit

router rip

networke 192.168.1.0/24

networke 192.168.3.0/24

After configure offset-list, we can type command **show ip rip** in switch A, it show the route table 192.168.3.0 metric is 4, If not set offset-list, the metric is 2.

16.2.3.3 RIPv2 Authentication

RIPv2 protocol supports MD5 and t text authentication, the same

topology as above.

The configuration of Switch A and Switch B

configure terminal

key chain test	<pre>// Configure a keychain called test</pre>
key 1	<pre>// The only key on this keychain is "key 1"</pre>
key-string admin	<pre>// It contains an authentication password</pre>
	"admin"

exit

exit

interface vlan 1

ip rip authentication key-chain test

ip rip authentication mode md5

interface vlan 2

ip rip authentication key-chain test

ip rip authentication mode md5

the result:

Type command show ip rip in Switch A

It will show route table 192.168.2.0, not show route table 192.168.23.0.

Type command show ip rip in Switch B

It only show route table 192.168.12.0.

If Swith A and Switch B are not the same authentication mode, they can't obtain route table each other.

16.3 **OSPF**

16.3.1 OSPF Overview

Open Shortest Path First (OSPF) is a link state-based interior gateway protocol developed by the IETF organization. Currently using version 2 (RFC2328), its features are as follows:

- Adaptable to a wide range of networks supporting networks of all sizes and supporting up to hundreds of routers.
- Fast convergence——sends the update packet immediately after the topology of the network changes, so that the change is synchronized in the autonomous system.
- No loopback——Because OSPF uses the shortest path tree algorithm to calculate routes based on the collected link state, the algorithm itself ensures that loopback routes are not generated.
- Area division——allows the network of the autonomous system to be divided into areas for management, and the routing information transmitted between the areas is further abstracted, thereby reducing the occupied network bandwidth.
- Equivalent routing——supports multiple equal-cost routes to the same destination address.

Route grading——Use four different types of routes, in order of priority: intra-area routes, inter-area routes, first-class external routes, and second-type external routes.

 Supports authentication—supports interface-based packet authentication to ensure the security of route calculation.

 Multicast transmission——Protocol packets are sent in multicast mode.

16.3.2 OSPF Configuration

16.3.2.1 OSPF Basic Configuration

Enabling OSPF requires that you create an OSPF routing process, specify the range of IP addresses to be associated with the routing process, and assign area IDs to be associated with that range.

Beginning in privileged EXEC mode, follow these steps to enable OSPF:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Enable OSPF routing,
		and enter router
		configuration mode.
Step 3	router-id A.B.C.D	(Optional)Configure

		router id.
Step 4	network A.B.C.D/M area	Define an interface on
	(A.B.C.D <0-4294967295>)	which OSPF runs and
		the area ID for that
		interface. The area ID
		can be a decimal value
		or an IP address.
Step 5	exit	Return to privileged
		EXEC mode.
Step 6	write	Save configurations.

To terminate an OSPF routing process, use the **no router ospf global**

configuration command.

16.3.2.2 Configure OSPF Interface

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface vlan vlan_id	Enter interface
		configuration mode,
		and specify the Layer 3
		interface to configure.
Step 3	ip ospf cost <1-65535>	(Optional) Explicitly

		specify the cost of
		sending a packet on the
		interface.
Step 4	ip ospf retransmit-interval seconds	(Optional) Specify the
		number of seconds
		between link state
		advertisement
		transmissions. The
		range is 1 to 65535
		seconds. The default is 5
		seconds.
Step 5	ip ospf transmit-delay seconds	(Optional) Set the
		estimated number of
		seconds to wait before
		sending a link state
		update packet. The
		range is 1 to 65535
		seconds. The default is 1
		second.
Step 6	ip ospf priority number	(Optional) Set priority to
		help determine the
		OSPF designated router

		for a network. The
		range is from 0 to 255.
		The default is 1.
Step 7	ip ospf hello-interval seconds	(Optional) Set the
		number of seconds
		between hello packets
		sent on an OSPF
		interface. The value
		must be the same for all
		nodes on a network.
		The range is 1 to 65535
		seconds. The default is
		10 seconds.
Step 8	ip ospf dead-interval seconds	(Optional) Set the
		number of seconds after
		the last device hello
		packet was seen before
		its neighbors declare
		the OSPF router to be
		down. The value must
		be the same for all

					The range is 1 to 65535
					seconds. The default is 4
					times the hello interval.
Step 9	ір	ospf	authentication	-key	(Optional) Assign a
	auth_	_key			password to be used by
					neighboring OSPF
					routers. The password
					can be any string of
					keyboard-entered
					characters up to 8 bytes
					in length. All
					neighboring routers on
					the same network must
					have the same
					password to exchange
					OSPF information.
Step 10	ip os	spf messa	age-digest-key k	keyid	(Optional) Enable MDS
	md5	key			authentication.
					•keyid—An identifier
					from 1 to 255.
					•key—An alphanumeric
					password of up to 16

		bytes.
Step 11	ip ospf authentication	Enable ospf
		authentication.
Step 12	ip ospf authentication	Enable ospf MD5
	message-digest	authentication.
Step 13	exit	Return to privileged
		EXEC mode.
Step 14	show ip ospf interface	Display OSPF-related
	[interface-name]	interface information.
Step 15	write	Save configurations.

16.3.2.3 Configure OSPF Area Parameters

You can optionally configure several OSPF area parameters. These parameters include authentication for password-based protection unauthorized against access to stub an area, areas, and not-so-stubby-areas (NSSAs). Stub areas are areas into which information on external routes is not sent. Instead, the area border router (ABR) generates a default external route into the stub area for destinations outside the autonomous system (AS). An NSSA does not flood all LSAs from the core into the area, but can import AS external routes within the area by redistribution.

Route summarization is the consolidation of advertised addresses into a
single summary route to be advertised by other areas. If network numbers are contiguous, you can use the area range router configuration command to configure the ABR to advertise a summary route that covers all networks in the range.

Beginning in privileged EXEC mode, follow these steps to configure area parameters:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Enable OSPF routing,
		and enter router
		configuration mode.
Step 3	area area-id authentication	(Optional) Allow
		password-based
		protection against
		unauthorized access to
		the identified area. The
		identifier can be either a
		decimal value or an IP
		address.
Step 4	area area-id authentication	(Optional) Enable MD5
	message-digest	authentication on the

		area.
Step 5	area area-id stub[no-summary]	(Optional) Define an
		area as a stub area. The
		no-summary keyword
		prevents an ABR from
		sending summary link
		advertisements into the
		stub area.
Step 6	area area-id nssa[no-summary]	(Optional) Defines an
		area as a
		not-so-stubby-area.
		Every router within the
		same area must agree
		that the area is NSSA.
		Select one of these
		keywords:
		 no-summary—Select
		to not send summary
		LSAs into the NSSA.
Step 7	area area-id range	(Optional) Specify an
	address/masklen	address range for which
		a single route is

		advertised. Use this
		command only with
		area border routers.
Step 8	exit	Return to privileged
		EXEC mode.
Step 9	show running ip ospf	Display OSPF
		running-config
		information.
Step 10	show ip ospf database	Display lists of
		information related to
		the OSPF database for a
		specific router.
Step 11	write	Save configurations.

16.3.2.4 OSPF Protocol Creates Default Routes

By default, an OSPF router in a normal OSPF area does not generate a default route even if it has a default route. When the default route in the network is generated by other routing processes, the router must advertise the default route to the entire OSPF autonomous domain. The implementation method is to manually configure the ASBR to generate a default route. After the configuration is complete, the router generates a default ASE LSA (Type 5 LSA) and advertises it to the entire OSPF

autonomous domain.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Enter OSPFconfigure
		mode.
Step 3	default-information originate	Configure default route
	{[always]}*1 {[metric]	
	<0-16777214>}*1 {[metric-type]	
	(1 2)}*1 {[route-map]	
	<word>}*1</word>	
Step 4	exit	Returen global
		configuration mode.

16.3.2.5 Show OSPF Configurate Information

	Command	Function
Step 1	configure terminal	Enter global
		configuration
		mode.
Step 2	show ip ospf database [router]	Display lists of
	[self-originate]	information
	show ip ospf database[router] [adv-router	related to the

	[ip-address]]	OSPF
	show ip ospf database [network]	database.
	[self-originate]	
	show ip ospf database[network] [adv-router	
	[ip-address]]	
	show ip ospf database[summary]	
	[self-originate]	
	show ip ospf database[summary] [adv-router	
	[ip-address]]	
	show ip ospf database[asbr-summary]	
	[self-originate]	
	<pre>show ip ospf database[asbr-summary]</pre>	
	[adv-router [ip-address]]	
	show ip ospf database[external]	
	[self-originate]	
	show ip ospf database[external] [adv-router	
	[ip-address]]	
Step 3	show ip ospf route	Display lists of
		information
		related to the
		OSPF route.
Step 4	show ip ospf interface[interface-name]	Display

		OSPF-related
		interface
		information.
Step 5	show ip ospf neighbor	Display OSPF
		interface
		neighbor
		information.

16.3.3 OSPF Configuration Example

16.3.3.1 Intra-area Routing

1. Purposes: Test OSPF intra-area route learning

2. Networking topology

3. Configuration

Switch A create 2 VLAN interface, vlan1 ip 192.168.1.1/24, vlan2 ip

192.168.2.1/24

interface vlan 1

ip address 192.168.1.1/24

exit

interface vlan 2

ip address 192.168.2.1/24

exit

interface gigabitethernet 0/1

switchport access vlan 1

interface gigabitethernet 0/2

switchport access vlan 2

Enable ospf, and configure these two network segments to run the ospf

protocol.

router ospf

router-id 1.1.1.1

network 192.168.1.0/24 area 0

network 192.168.2.0/24 area 0

Switch B, Switch C, Switch D configuration is similar to Switch A.

4. Test result

Switch A route table:192.168.4.0 and 192.168.5.0

Switch B route table:192.168.4.0 and 192.168.5.0 Switch C route table:192.168.1.0 and 192.168.5.0 Switch D route table:192.168.1.0 and 192.168.4.0

16.3.3.2 OSPF Inter-area Routing

- 1. Purposes: Test OSPF inter-area route learning
- 2. Networking topology

3. Configuration

Switch A create 2 VLAN interface, vlan1 and vlan2, ip address 192.168.1.1/24, area 0 and 192.168.2.1/24, area 1.

Switch B, create 2 VLAN interface, vlan1 and vlan3, ip address 192.168.1.2/24, area 0 and 192.168.3.1/24, area 2.

Switch C, create 2 VLAN interface, vlan2 and vlan4, ip address 192.168.2.2/24, area 1 and 192.168.4.1/24, area 1.

Switch D create 2 VLAN interface, vlan3 and vlan5, ip address 192.168.3.2/24, area 2 and 192.168.5.1/24, area 2.

The configuration process refers to the route test configuration in the OSPF area.

Test result

Switch A route table: 192.168.4.0 and 192.168.5.0;
Switch B route table: 192.168.4.0 and 192.168.5.0;
Switch C route table: 192.168.1.0 and 192.168.5.0;
Switch D route table: 192.168.1.0 and 192.168.4.0.

16.3.3.3 OSPF Route Convergence

1. Purpose: Test OSPF route convergence speed

2.Networking Topology and configuration

Refer to OSPF intra-area route test and OSPF inter-area route test.

Test process

- a. intra-area route are converged. Refer to the OSPF intra-area route test to disconnect 192.168.4.0/24 of Switch C.
- b. intra-area route are converged. Refer to the OSPF intra-area route test to reconnect 192.168.4.0/24 of Switch C.
- c. inter-area route are converged. Refer to the OSPF inter-area route test to disconnect 192.168.4.0/24 of Switch C.
- d. inter-area route are converged. Refer to the OSPF inter-area route test to reconnect 192.168.4.0/24 of Switch C

Test result:

Check whether the time of deleting and adding the 192.168.4.0 network

segment entries on Switch A, Switch B, and Switch D is the same as the configuration.

16.3.3.4 OSPF Stub Area

1.Purpose: Test OSPF stub area function.

2.Networking Topology

3.Configuration

Set the interconnection between Switch B and Switch D as STUB AREA by

referring to the OSPF inter-area route test configuration.

Switch B:

router ospf

area 2 stub

Switch D:

router ospf

area 2 stub

Test result:

After the OSPF inter-area route test is performed, the routing information of Switch A, Switch B, and Switch C is unchanged. The routing table of Switch D adds the default route to the original route entry. The next hop is Switch B.

16.3.3.5 OSPF Route Aggregation

- 1. Purpose: Test the route aggregation function.
- 2.Networking topology

3. Configuration

Refer to OSPF intra-area routing configuration.

Switch B learn route aggregation in area 2.

Switch B:

gpon-olt(config)# router ospf

gpon-olt (config-router-ospf)# area 2 range 10.1.0.0/16

Switch C

interface vlan 200

ip address 10.1.1.1/24

interface vlan 201

ip address 10.1.2.1/24

router ospf

network 10.1.1.0/24 area 2

network 10.1.2.0/24 area 2

4.Test result

Before configure route aggregation in SwitchB, Switch A show route 10.1.1.1/24 and 10.1.2.1/24 .After configure route aggregation in SwitchB, only route 10.1.0.0/16 can be seen in SwitchA.

Before			
aggregation	172.16.0.0/24 is subnetted, 2 subnets		
Switch A	0 172.16.1.0 [110/2] via 192.168.2.2, 00:00:02,		
	Vlan2		
	0 172.16.2.0 [110/2] via 192.168.2.2, 00:00:02,		
	Vlan2		
	0 192.168.4.0/24 [110/2] via 192.168.2.2, 00:00:02,		
	Vlan2		
	0 IA 192.168.5.0/24 [110/3] via 192.168.1.2, 00:00:02,		

	Vlan1		
	10.0.0.0/24 is subnetted, 2 subnets		
	0 IA 10.1.2.0 [110/3] via 192.168.1.2, 00:00:02, Vlan1		
	0 IA 10.1.1.0 [110/3] via 192.168.1.2, 00:00:02, Vlan1		
	C 192.168.1.0/24 is directly connected, Vlan1		
	C 192.168.2.0/24 is directly connected, Vlan2		
	0 IA 192.168.3.0/24 [110/2] via 192.168.1.2, 00:00:03,		
	Vlan1		
After	172.16.0.0/16 is variably subnetted, 3 subnets, 2		
aggregation	masks		
Switch A	0 172.16.0.0/16 is a summary, 00:01:47, Null0		
	0 172.16.1.0/24 [110/2] via 192.168.2.2, 00:01:47,		
	Vlan2		
	0 172.16.2.0/24 [110/2] via 192.168.2.2, 00:01:47,		
	Vlan2		
	0 192.168.4.0/24 [110/2] via 192.168.2.2, 00:01:47,		
	Vlan2		
	0 IA 192.168.5.0/24 [110/3] via 192.168.1.2, 00:01:47,		
	Vlan1		
	10.0.0.0/16 is subnetted, 1 subnets		
	0 IA 10.1.0.0 [110/3] via 192.168.1.2, 00:00:16, Vlan1		
	C 192.168.1.0/24 is directly connected, Vlan1		
	C 192.168.2.0/24 is directly connected, Vlan2		
	0 IA 192.168.3.0/24 [110/2] via 192.168.1.2, 00:01:47,		
	Vlan1		

16.4 Manipulate Routing Updates

This section describes direct route redistribution for different routing protocols. Methods for controlling routing information sent between different routing protocols include: using a distribution list, using a routing map, and modifying management distances

16.4.1 Route IP List

16.4.1.1 Configure Access-List

Access lists are typically used to control user data flow, but access lists do not affect the data flow generated by the current router. There is an implicit deny any statement at the end. Access-List lists are available in standard and extended formats:

1. The standard index has a value range of 1-99, 1300-1999, and only controls the source ip;

2. Extended index value range: 100-199, 2000-2699, control source ip and destination ip

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	ip access-list access_list_index	Define a standard
	{ permit deny } <a.b.c.d></a.b.c.d>	access-list,

	<wildcard_mask></wildcard_mask>	access_list_index
		ranges from 1-99 to
	<pre>ip access-list access_list_index</pre>	1300-1999,
	{ permit deny } host <a.b.c.d></a.b.c.d>	< A.B.C.D. > <
		wildcard_mask >
	<pre>ip access-list access_list_index</pre>	defines standard IP
	{permit deny} any	access based on the
		source IP address or
		mask;
		Host defines standard
		IP access based on a
		single source IP
		address;
		Any standard IP access
		based on any source IP
		address;
Step 2b	ip access-list access_list_index	Define an extended
	{ permit deny } <a.b.c.d></a.b.c.d>	access-list,
	<wildcard_mask> {<a.b.c.d> <</a.b.c.d></wildcard_mask>	access_list_index
	wildcard_mask> host <a.b.c.d> </a.b.c.d>	ranges from 100-199 to
	any}	2000-2699,

		< A.B.C.D. > <
	<pre>ip access-list access_list_index</pre>	wildcard_mask >
	{ permit deny } host <a.b.c.d></a.b.c.d>	defines extended IP
	{ <a.b.c.d> <wildcard_mask> host</wildcard_mask></a.b.c.d>	access based on the
	<a.b.c.d> any}</a.b.c.d>	source IP address or
		mask;
	<pre>ip access-list access_list_index</pre>	Host defines extended
	{ permit deny } any { <a.b.c.d></a.b.c.d>	IP access based on a
	<wildcard_mask> host <a.b.c.d></a.b.c.d></wildcard_mask>	single source IP
	any}	address;
		Any extended IP access
		based on any source IP
		address;
	no ip access-list access_list_index	Delete access-list
Step 3	exit	Return to privileged
		EXEC mode.
Step 4	show ip access-list	Show access-list
		information
Step 5	write	Save configurations.

To delete access list, command: **no ip access-list** access_list_index

16.4.1.2 Configure Prefix List

Prefix lists are similar to access lists, and the benefits of prefix lists include improved performance when loading and finding large lists, incremental update support, and greater flexibility.Filtering through the prefix list requires matching the routing prefix to the prefix listed in the prefix list, just as matching the access list.When there is a match, use routing.

By default, serial Numbers are generated automatically and incremented by 5.If automatic sequence number generation is disabled, you must specify a sequence number for each entry.You do not need to specify a serial number when deleting a configuration item.

The Prefix-List is identified by the Prefix List name, which can contain multiple table items.Each table item, in the form of a network prefix, specifies a matching range independently and is identified by a sequence_num.Sequence_num indicates the order in which matching checks are performed in the Prefix-List.Each table item has a "or" relationship, and during the match, the route checks sequence_num in ascending order for each table item identified by sequence_num.As long as one of the table items satisfies the condition, this means that the Prefix-List filter (which does not enter the match of the next table item) is passed.

161

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2a	<pre>ip prefix-list prefix_list_name [seq</pre>	Create a list of prefixes with
	sequence_num] {permit deny}	optional serial Numbers to
	<a.b.c.d m=""></a.b.c.d>	deny or allow access to
	[ge ge_value] [le le_value]	matching conditions.
		The sequence_num range is
	ip prefix-list prefix_list_name [seq	1-4294967295;
	sequence_num] {permit deny}	The ge_value range is 0-32;
	any	The range of le_value is
		0-32;
		Ge and le values specify the
		range of prefix lengths to
		match, and the specified ge
		values and values must
		satisfy:
		Prefix_len < ge_value <
		le_value < 32.
Step 2b	no ip prefix-list prefix_list_name	Delete prefix-list
Step 3	exit	Return to privileged EXEC

		mode.
Step 4	show ip prefix-list [detail	Show ip prefix-list
	summary]	information.
Step 5	write	Save configurations.

To remove the prefix list and all its entries, use the commsnd **no IP prefix-list** prefix_list_name .

The keywords ge and le are optional and are used to specify the range of prefix lengths to match, which must satisfy the condition: length < ge-value < le-value <= 32.

1. IP prefix-list 2 permit 2.2.2.0/24 /(match the first 24 bits: 2.2.*, mask must be 24 bits)

2. IP prefix-list 2 permit 2.2.2.2/24 ge 25 le 30 //(match the first24 bits :2.2.2.*, mask must be 25-30 bits)

3. IP prefix-list 2 permit 2.2.2.2/24 le 32 /(match the first 24 bits :2.2.2.*, mask must be 24-32 bits)

4. IP prefix-list 2 permit 2.2.2.2/24 ge 26 /(match the first 24 bits :2.2.2.*, mask must be 26-32 bits)

5. IP prefix-list 3 permit 0.0.0.0.0/0 le 32 /(matches all)

16.4.2 Route Redistribution

Redistribution refers to the ability of boundary routers connected to different routing selection domains to exchange and notify routing selection information between different routing selection domains (autonomous systems).Redistribution is always outward, and the router performing the redistribution does not modify its routing selection table.Router configuration command:**default-metric** is used to specify the seed metric values for all redistribution routes. Specify the seed metric values in a redistribute, for which you can use the option metric or routing mapping table.

Manage distance. When using routing redistribution, it may occasionally be necessary to modify the protocol's administrative distance to make it a priority.

Seed measurements. When routing redistribution occurs, metrics must be specified for the rerouting route. This measure, called the seed measure or default measure, is defined during the redistribution configuration. After specifying the seed measure for the redistribute route, the measure will increase normally within the autonomous system. The only exception is the OSPF E2 routing, which keeps the initial value regardless of how far it is propagated within the autonomic system.

164

Default seed measurements.RIP, IGRP, and EIGRP default to treat the seed metric value 0 as infinity.An infinite number of measurements indicate to the router that the reroute is unreachable and therefore should not be notified.Therefore, when rerouting the route to RIP, IGRP, and EIGRP, it is necessary to manually specify its seed measurement value, otherwise the rerouting route will not be notified.In OSPF, the redistributed routing defaults to 2 classes (E2), with a measurement value of 20.Except for the redistributed BGP routing, which defaults to 2 classes and measures 1.

Redistribute technology.Bidirectional redistribute: redistribute all routes between two routing selection processes.One-way redistribution: a default route is passed to a routing selection protocol, and only the network that is known through the routing protocol is passed to the other routing selection protocols.

Passive interface: on OSPF routers, allocation of passive - interface is used to make a specific interface can't accept that sends hello packets, also cannot form a neighbor relationship, using scene: 1: make a specific router interface does not participate in the process of routing protocol 2: without any neighbor relationship was established through a particular interface at the same time, also can notice of these interfaces are routing.

165

16.4.2.1 RIP Route Redistribution

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router rip	Start RIP and enter RIP
		configuration mode
Step 3	distance <1-255>	Set the administrative
		distance, default is 120.
Step 4	default-metric <1-16>	Default measurement
Step 5	redistribute	Inter-protocol routing
	(kernel connected static ospf)	redistribution, including
	{ metric <0-16>}* 1 {route-map	direct connection,
	<map-tag>}*1</map-tag>	kernel, ospf protocol,
		static routing
		information to rip
		protocol.Let rip be
		published.
Step 6	passive-interface <ifname></ifname>	Configure the passive
	{A.B.C.D}*1	interface
Step 7	offset-list (<access-list>) (in out)</access-list>	Used to adjust
	<0-16> {vlan <1-4094>}* 1	measurements

Step 8	show running-config	Show running-config
		information

16.4.2.2 OSPF Route Redistribution

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Start ospf and enter
		ospf configuration mode
Step 3	distance <1-255>	Set the administrative
		distance, default is 110.
Step 4	default-metric <0-16777214>	Used to specify the seed
		metric values for all
		redistribution routes
Step 5	redistribute	Inter-protocol routing
	(kernel connected ospf static)	redistribution, including
	{ metric <0-16>} {route-map	redistribution of direct
	<map-tag>}*1</map-tag>	connection, kernel, ospf
		protocol, static routing
		information to rip
		protocol.Get the ospf
		protocol out there.

Step 6	passive-interface <ifname></ifname>	Configure the passive
	{A.B.C.D}*1	interface
Step 7	show running-config	Show running-config
		information

Example:

Configuration	Result	
switch c:	When configured with metric of 30	
router ospf	on switch c,	
router-id 3.3.3.3	On switch a: O E2 192.168.4.0/24	
network 192.168.2.3/24 area 1	[110/30] via 192.168.2.3,	
redistribute connected metric	01:01:27,Vlan2	
30(10)	When configured with metric of 10	
redistribute rip metric 30(10)	on switch c,	
	On switch a: O E2 192.168.4.0/24	
	[110/10] via 192.168.2.3, 01:01:27,	
	Vlan2	

16.4.3 Distribution List Control Routing Updates

A distribute-list distribution list is a tool used to control routing updates, filtering only routing information, not LSA.Therefore, it is suitable for distance vector routing protocols, such as RIP and EIGRP.Like the OSPF link state routing protocol, the IN direction (which affects local routing tables but is present IN LSDB), the OUT direction does not work.But local originating routes can be filtered because of reroute routing, not LSA delivery.The distribute-list out command filters routing selection updates from outbound routing updates from the interface or specifies routing selection updates for routing selection protocols;The istribute-list in command filters routing selection updates coming in from the specified interface.

16.4.3.1 Distance Vector Routing Protocol RIP

Between routers, routing information is passed, and the distribution list has absolute control over routing information. Therefore, if it is in the direction, by deploying the distribution list, the specific route can be filtered, so that the local routing routing table of the distribution list is changed, and when the local router updates the routing information to the downstream router, the actually updated content is An entry that is affected by the distribution list.

At the same time in the out direction, there is no problem.

169

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode
Step 2	router rip	Start RIP and enter RIP
		configuration mode
Step 3	distribute-list <access-list></access-list>	Filter routing using the
	(in out) { <ifname>}*1</ifname>	access control list
Step 4	distribute-list prefix <prefix-list></prefix-list>	Filter routing using
	(in out) { <word>}*1</word>	prefix lists
Step 5	show running-config	Show running-config
		information

Configuration example 1 (in a single routing protocol environment-RIP)

	192.16	B.12.0 192.1	68.23.0	RIP
92 168 1 OL		Fa0/0		
92 168.2.0	R1	R2	R3	
92,168,3,0	- Jandatara -	1 Antonia	net (
	192.168.1.0	192.168.1.0	192.168.1.0	
	192.168.2.0	192.168.2.0	192.168.2.0	
	192,168,3,0		192,168,12,0	

Initially, R3 was able to learn the three loopback routes of R1, as well as

the 192.168.12.0/24 routes.Now we don't want R3 to learn

192.168.3.0/24 routing, so we can configure R2 as follows:

R2(config)# access-list 1 deny 192.168.3.0

R2(config)# access-list 1 permit any

R2 (config) # router rip

R2(config-router)# redistribute -list 1 out ethv0.3

Of course, in - oriented distribution lists can have the same effect in R3.

Configuration example 2 (in a single routing protocol environment-RIP)

In R2, if the following configuration is made:

R2(config)# access-list 1 deny 192.168.3.0

R2(config)# access-list 1 permit any

R2 (config) # router rip

R2(config-router)# redistribute -list 1 in ethv0.3

So, first of all, R2's own routing table will change, and 3.0's routing will

be filtered out, and R3, the downstream RIP router, won't learn 3.0.

16.4.3.2 Link State Routing Protocol OSPF

Note that for a link-state routing protocol such as OSPF, the messages transmitted between routers are no longer routing information, but LSAs, and the distribution list cannot filter LSAs. Therefore, to deploy the distribution list in the link state protocol, you need to be aware of: In the in direction, the distribution list can only filter the route when the LSA is received locally. When the route is generated, the router's own routing table that implements the distribution list will be affected by the distribution list (but the local LSDB still has the LSA), and The router still sends the LSAs in the LSADB to the neighbors. Therefore, the locally filtered routes and neighbors still exist.

In the outbound direction, the distribution list can only work on the ASBR that performs the route redistribution action, and can only work on externally imported routes. Because OSPF performs re-release, in fact, these external routes are introduced in the form of routes, so the distribution list can work normally in this case, but if it is not a local originating external route, or an internal OSPF route, out direction The distribution list is at a loss.

For example, redistribute directly into OSPF on R1, and use the outbound distribution list to filter out the 1.1.1.0 external route. However, R1 re-posts the incoming route. If the outbound distribution list on R2 attempts to block R3 from accepting the route or LSA, it cannot, because this is not a locally originated external route.

OSPF distribution list command:

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode
Step 2	router ospf	Start ospf and enter
		ospf configuration mode
Step 3	distribute-list <access-list> out</access-list>	Use the access control
	(kernel connected static rip)	list for redistribution
Step 4	show running-config	Show running-config
		information

Configuration example 1--OSPF out directional distribution list in a single routing protocol environment

Distribution list, deployed in a link state routing protocol such as OSPF, can only be used if the out direction is used.

Pictured above, deployed on R1, R1 use redistribute direct way to introduce these three exterior routing and then out the direction of the distribution list, will be deployed on R1, and have effect on the three routing.

R1(config)# access-list 1 deny 192.168.3.0

R1(config)# access-list 1 permit any

R1 # router ospf (config)

R1 (config - the router) # redistribute connected subnets

R1(config-router)# network 192.168.12.1 255.255.255.0 area 0

R1 (config - the router) # distribute - list out 1

After the above configuration is implemented, R1 will filter out the 3.0 routing.

Configure example 2 -- deploy the distribution list when republished between protocols

RIP redistributes into OSPF

Case 1

R2 is configured as follows:

Access - the list 1 permit 1.1.1.0

The router ospf

Redistribute rip metric 10 subnets

Distribute - list 1 out rip

What this command means here is that only 1.1.1.0 is allowed out of the

reroute from the RIP routing protocol (to the OSPF protocol, there is no

direction, as long as the interface running the OSPF)

In R3, there are only 1.1.1.0 routes

Case 2

Open loopback interface 2.2.2.2/24 on R2, R2 reissues RIP into OSPF and

reissues direct access to OSPF

Access - the list 1 permit 1.1.1.0

The router ospf

Redistribute connected subnets

Redistribute rip metric 10 subnets

Network 192.168.23.0 0.0.255 area 0

Distribute - list out 1

// there are only 1.1.1.0 routes in R3, that is, the command redistribute -list 1 out here works for all routes injected from outside into the OSPF, and only 1.1.0 routes survive. The source of continuous routing is direct connection routing, or RIP.

Case 3

Open loopback interface 2.2.2.2/24 on R2, R2 reissues RIP into OSPF and

reissues direct access to OSPF

Access - the list 1 permit 1.1.1.0

The router ospf

Redistribute connected subnets

Redistribute rip metric 10 subnets

Distribute - list 1 out rip

// R3 has routing in the routing table: 1.1.1.0, 2.2.0, 192.168.12.0

// that is, the routing other than 1.1.1.0 that was re-published from RIP

was blocked and the local direct connection port was republished

Configuration example 3:

Configuration	Result		
Configure switch c:	Result:		
ip access-list 1 deny 192.168.6.0	Switch b:		
0.0.0255	Unable to learn 192.168.6.0		
ip access-list 1 permit any	segment of switch f;		
router ospf	Learned 192.168.7.0 segment of		
ospf router-id 3.3.3.3	switch f;		
redistribute connected metric 30			
redistribute rip metric 30			
network 192.168.2.3/24 area			
0.0.0.1			
distribute-list 1 out rip			

16.4.4 Routing Maps to Control Routing Updates

16.4.4.1 Configure Route Map

Route Map can be used for route redistribution and policy routing, and is often used in BGP. Policy routing is actually a complex static route. The

static route is based on the destination address of the packet and forwarded to the specified next hop route. Policy routing can provide multiple types of filtering and classification.

The Switch can run multiple routing protocols simultaneously, which can redistribute information from one routing protocol to another. For example, you can instruct conversion to re-read IGRP-derived routes by using RIP or by re-reading static routes using IGRP. Reassigning information from one routing protocol to another applies to all supported IP-based routing protocols.

By defining a route map between two domains, it is possible to conditionally control the redistribution of routes between routing domains. Match and set the Route Map configuration command to define the conditional part of the roadmap. The Match command specifies that a standard must be matched; the Set command specifies the action that will be taken if the route update satisfies the conditions defined by the matching command. Although redistribution is a protocol-independent feature, some matching and setting Route Map configuration commands are specific to a particular protocol.

One or more matching commands and one or more Set commands follow a Route Map command. If there is no matching command, all match. If there is no command set, nothing is done except for the match. Therefore, you need at least one match or setup command.

177

Like the access list, there is an implicit deny any statement at the end of the route map. The result of this statement depends on the purpose of the route map.

	Command		Function
Step 1	configure terminal		Enter global
			configuration mode.
Step 2	route-map map_name	e	Configure a route-map
	[permit deny] sequer	nce_number	and enter the
			route-map configuration
			mode.
Step 3	match ip address		Matching the specified
	access_list_number		access-list, the range of
			access_list_number is
			1-2699, where 1-99 and
			1300-1999 are standard
			access-list, and 100-199
			and 2000-2699 are
			extended access-list.
Step 4	match ip address	s prefix-list	Match the specified
	prefix_list_name		prefix-list.
Step 5	match ip	next-hop	Matching the next hop
	access_list_number		routing address through

		the specified access-list,
		the access_list_number
		range is 1-2699, where
		1-99 and 1300-1999 are
		standard access-list,
		100-199 and 2000-2699
		are extended access-list.
Step 6	match ip next-hop prefix-list	Match the next hop
	prefix_list_name	routing address through
		the specified prefix-list.
Step 7	match interface interface_name	Matches the routing of
		the next outgoing
		interface that is one of
		the specified interfaces
Step 8	match metric metric_value	Matching the specified
		routing metrics,
		metric_value ranges
		from 0-4294967295.
Step 9	match tag tag_value	Matches the specified
		routing tag, and the
		tag_value range is
		1-4294967295.

Step 10	set metric_value	Set the metrics for the	
		reroute routing, and	
		metric_value ranges	
		from 0-4294967295.	
Step 11	<pre>set metric-type metric_type</pre>	Sets the measurement	
		value type for the	
		redistributed routing.	
Step 12	set tag tag_value	Sets the tag for the	
		redistributed routing.	
Step 13	set ip next-hop metric_value	Specifies the measure of	
		the next hop of	
		forwarding.	
Step 14	exit	Return to privileged	
		EXEC mode.	
Step 15	show route-map	Show route-map	
		information	
Step 16	write	Save configurations.	
To delete	a route-map entry, use the co	ommand no route-map	
map_name.Delete the match entry and use the command no			

match.Delete a set entry, using the command no set.
	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Start ospf and enter
		ospf configuration mode
Step 3	redistribute	Redistribute direct
	(kernel connected ospf static)	connection, kernel, ospf
	{metric <0-16777214>}	protocol, static routing
	{metric-type (1 2)} {route-map	information to rip
	<word>}</word>	protocol.Get the ospf
		protocol out there.
Step 4	show running-config	Show running-config
		information

16.4.4.2 Link Status Routing Protocol OSPF

For example

switch c:	1) switch c execute: redistribute rip
ip access-list 1 permit 192.168.6.0	route-map test1
0.0.255	switch b result
ip access-list 2 permit 192.168.7.0	========= OSPF external
0.0.255	routing table ==========
ip prefix-list 1 seq 5 permit	N E1 192.168.6.0/24 [302]
192.168.6.0/24	tag: 0
ip prefix-list 2 seq 5 permit	
192.168.7.0/24	via 192.168.1.1, ethv0.1
route-map test1 permit 10	N E2 192.168.7.0/24
match ip address 1	[2/500] tag: 0
set metric 300	
set metric-type type-1	via 192.168.1.1, ethv0.1
!	2) switch c execute: redistribute rip
route-map test1 permit 30	route-map test2
match ip address 2	switch b result
set metric 500	N E2 192.168.7.0/24
!	[2/500] tag: 0
route-map test2 permit 20	
match ip address 2	via 192.168.1.1, ethv0.1
set metric 500	3) switch c execute: redistribute rip
!	route-map test3

route-map test3 permit 40	switch b result
match ip address prefix-list 1	N E2 192.168.6.0/24
set metric 400	[2/400] tag: 0
!	
route-map test3 permit 50	via 192.168.1.1, ethv0.1
match ip address prefix-list 2	N E2 192.168.7.0/24
set metric 600	[2/600] tag: 0
!	
	via 192.168.1.1, ethv0.1

16.4.5 Prefix Lists to Filter Routing

Methods of OSPF filtering LSA: area filter-list prefix; only those three

types of LSA produced from the ABR can be filtered.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	router ospf	Enter the OSPF
		configuration mode.
Step 3	area area-id filter-list prefix	Configure the list of
	<prefix> (in out)</prefix>	prefixes within the
		region.

Step 4	exit	Return to privileged
		EXEC mode.

Filter three types of LSA on ABR.

By default, R3 can learn the inter-area routes of 1.1.1.1, 11.11.11.11, 2.2.2.2, and 192.168.12.0.These routes are calculated by R3, which collects and calculates "three LSA classes injected from R2 into area0".So what if we don't want R3 to learn the 11.11.11.11/32 route?

ip prefix-list 100 deny 11.11.11.11/32 ip prefix-list 100 permit 0.0.0.0/0 le 32 ! router ospf area 0 filter-list prefix 100 in

The above command means that the prefix list filter is executed when three classes of LSA are injected from other regions into the area0 region.If it's area1 filter-list prefix 100 out, this command means to perform the prefix filter when injecting 3 classes of LSA from area1 into all other areas. Note that when we deploy on ABR filtering scheme of this three kinds of LSA, able to filter only those generated from the three kinds of ABR LSA, above area0 by default in the flood of 1.1.1.1, 11.11.11.11, 2.2.2.2, 192.168.12.0 routing of these three kind of LSA are produced from R2, so can be filtered by prefix list.

17IPv6

17.2 VLAN IPv6 Address

Begin at privileged configuration mode, configure or delete IPv6 address and prefix of VLAN as the following table shows.

	Command	Function
Step 1	config terminal	Enter global configuration
		mode.
Step 2	interface vlan vlan_id	enter VLAN interface
		configuration
		vlan_id range:1~4094
Step 3a	ipv6 address <x:x::x:x m=""></x:x::x:x>	Configure the IPv6 address
	[eui-64]	and prefix length of the vlan
		interface. By default, the
		interface automatically
		generates a link-local address.
		Eui-64, which is an optional
		parameter, is used to
		automatically fill the low
		64-bit of IPv6 address
		according to the eui-64

		specification.
	ipv6 address <x:x::x:x></x:x::x:x>	Configure the IPv6 link-local
	link-local	address of the vlan interface.
Step 3b	no ipv6 address	Delete specified IPv6 address
	<x:x::x:x m=""></x:x::x:x>	of VLAN interface.
	no ipv6 address	Delete all IPv6 addresses of
		the VLAN interface.
	no ipv6 address <x:x::x:x></x:x::x:x>	Restore the default link-local
	link-local	address of VLAN interface.
Step 4	exit	Exit to global configuration
		mode.
Step 5	show interface vlan vlan_id	Verify the configuration
		information.
Step 6	write	Save configurations.

17.3 IPv6 Static Neighbour

The neighbor items are the neighbor information of the device in the link range. The device neighbor items can be created dynamically through the neighbor request message NS and the neighbor advertisement message NA; it also can be created manually.

The device identifies a static neighbor item uniquely based on the IPv6 address of the neighboring node and the interface number that connected to the neighboring node.

When you delete a static neighbor item corresponding to a VLAN interface, you only need to specify the VLAN interface.

	Command	Function
Step 1	configure terminal	Enter global configuration
		mode.
Step 2	ipv6 neighbor <x:x::x:x></x:x::x:x>	Add a static item to the
	vlan vlan_id <hhhh:< th=""><th>neighbor discovery table, you</th></hhhh:<>	neighbor discovery table, you
	НННН:НННН>	must specify the network
		interface and link layer address.
Setp 3	no ipv6 neighbor	Delete the specified item of the
	<x:x::x:x> vlan vlan_id</x:x::x:x>	neighbor discovery table.
Step 4	show ipv6 neighbors	Show the neighbor items in the
		current neighbor discovery
		table.

17.4 IPv6 SLAAC

An IPv6 address consists of two parts: prefix and interface ID. A big feature of IPv6 is that it supports plug and play. IPv6 address stateless

autoconfiguration means that the node configures an IPv6 address automatically based on the information assigned by the router discovery/prefix discovery. Router discovery/prefix discovery means that when a node is connected to an IPv6 link, it can discover the local router, obtain the neighbor router information and the prefix of the network, and other configuration parameters from the received RA message but not by Dynamic Host Configuration Protocol (DHCPv6).

The device can obtain the IPv6 address prefix which carried in the RA message (Router-Advertisement, ICMPv6 Type 134), and generate the interface ID automatically through the interface, so as to get a completed 128-bit IPv6 address. By default, the RA message is sent once every 600s. The device can also send an RS (router solicit, ICMPv6 Type = 133) message to obtain the prefix.

Parameter Discovery: A node can discover the parameters of the link it is connected to, such as the MTU of the link and the hop limit.

17.4.1 IPv6 SLAAC Work Processes

The router discovery/prefix discovery is implemented by router solicitation message RS and router advertisement message RA. The specific process is as follows:

(1) When the node starts up, it sends a request to the router through RS message, requesting the prefix and other configuration information for

189

the configuration of the node.

(2) The router responds a RA message, which includes the prefix information option (the router also sends the RA message periodically). The prefix information option includes not only the prefix information of IPv6 address but also the preferred lifetime and valid lifetime of the prefix. After receiving the periodical RA message, the node will update the preferred lifetime and valid lifetime and valid lifetime on the message.

(3) The node configures IPv6 address and other information of the interface automatically by using the prefix and other configuration parameters in the RA message responded by the router. During the valid lifetime, the automatically generated address can be used normally; after the valid lifetime expired, the automatically generated address will be deleted.

17.4.2 IPv6 SLAAC Configuration

Begin at privileged configuration mode, configure or delete IPv6 address and prefix of VLAN as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global configuration mode.
Step 2	interface vlan vlan_id	Enter VLAN interface

		configuration. <i>vlan_id</i> range:
		1-4094.
Step 3	no ipv6 nd suppress-ra	Disable RA message suppression.
		The interface sends RA messages
		periodically (default 600S). By
		default, RA message suppression
		is enabled.
	ipv6 nd suppress-ra	Enable RA message suppression.
Setp 4a	ipv6 nd ra-interval	Configure the interval for sending
	<1-1800>	RA messages in second. The
		minimum value is 1s and the
		maximum value is 1800s. The
		default is 600s.
Step 4b	ipv6 nd ra-interval	Configure the interval for sending
	msec <70-1800000>	RA messages in millisecond. The
		minimum value is 70ms and the
		maximum value is 1800000ms.
		The default is 600000ms.
Step 5	ipv6 nd ra-lifetime	Configure the lifetime of the RA
	<0-9000>	message. The minimum value is 0s
		and the maximum value is 9000s.
		The default is 1800s.

Step 6	ipv6 nd reachable-time	Specify the reachability interval of
	<1-3600000>	a new neighbor. It is used to
		detect neighbors that are
		unreachable in the neighbor
		discovery table. The minimum
		value is 1s and the maximum
		value is 3600000s. The default is
		0s.
Step 7	ipv6 nd	The set/unset flag in IPv6 router
	home-agent-config-flag	advertisement message is used to
		indicate to the host that the
		router acts as a home agent and
		includes the home agent option. It
		is not set by default.
Step 8	ipv6 nd	When the local proxy
	home-agent-preference	configuration flag is set, this value
	<0-65535>	indicates the host proxy
		preference. The default value 0
		indicates the lowest priority.
Step 9	ipv6 nd	When the local proxy
	home-agent-lifetime	configuration flag is set, this value
	<0-65520>	indicates the host agent lifetime.

			The default value is 0.
Step 10	ipv6	nd	Advertisement Interval option
	adv-interval-option		indicates the maximum time (in
			milliseconds) between
			consecutive unsolicited router
			advertisements.
Step 11	ipv6	nd	This flag bit indicates which
	managed-config-flag		automatic configuration mode is
			used to obtain the IPv6 address.
			When the M bit is set to 1, the
			device that received this RA
			message will use the configuration
			protocol (such as DHCPv6) to
			obtain an IPv6 address. By default,
			this flag bit is 0.
Step 12	ipv6	nd	This flag bit indicates which mode
	other-config-flag		is used to configure other
			configuration information (such as
			DNS, domain name, etc.) except
			IPv6 address. When the O bit is
			set to 1, the device that received
			this RA message will use the

		configuration protocol (such as
		DHCPv6) to obtain configuration
		information except IPv6 address.
		By default, this flag bit is 0.
Step 13	ipv6 nd prefix	Configure the parameters of the
	<x:x::x:x m=""></x:x::x:x>	prefix declared on the network
	[valid-lifetime][preferr	interface;
	ed-lifetime]	Valid-lifetime: The length of time
	[off-link]	(in seconds) that the prefix is
	[no-autoconfig]	valid. The value <i>infinite</i> means
	[router-address]	infinity. Range: <0-4294967295
		infinite> Default: 2592000
		Preferred-lifetime: The preferred
		length of time (in seconds) for the
		prefix. Range: <0-4294967295
		infinite> Default: 604800
		off-link: Indicates that the link or
		link attribute does not declare a
		prefix.
		no-autoconfig: Indicates to the
		device on the link that the
		specified prefix cannot be used for

		IPv6 autoconfiguration.
		router-address: The R flag
		indicates to the host on the local
		link that the specified prefix
		contains the full IPv6 address.
Step 14	ipv6 nd	Set router preferences.
	router-preference	
	(high medium low)	
Step 15	ipv6 nd mtu <1-65535>	Configure the interface MTU. MTU
		range: 1-65535. The default is 0.

17.4.3 Example(pending)

17.5 DHCPv6

17.5.1 DHCPv6 Overview

DHCPv6 (Dynamic Host Configuration Protocol for IPv6) is a protocol designed for IPv6 addressing schemes that assigns IPv6 prefixes, IPv6 addresses, and other network configuration parameters to hosts.

Compared with other IPv6 address allocation methods (manual configuration, stateless autoconfiguration through network prefix in router advertisement messages, etc.), DHCPv6 has the following

advantages:

- Not only IPv6 addresses, but also IPv6 prefixes can be assigned to facilitate automatic configuration and management of the whole network.
- Better control of address allocation. Not only can DHCPv6 record the address/prefix assigned to the host, but it can also assign a specific address/prefix to a specific host for network management.
- In addition to the IPv6 prefix and IPv6 address, it can also assign network configuration parameters such as DNS server and domain name to the host.

17.5.1.1 DHCPv6 Network Composition

Figure 1: DHCPv6 network Composition

As shown in figure 1, the DHCPv6 networking includes the following three roles:

DHCPv6 client: A device that dynamically obtains IPv6 addresses, IPv6 prefixes, or other network configuration parameters.

DHCPv6 server: A device responsible for assigning IPv6 addresses, IPv6 prefixes, and other network configuration parameters to DHCPv6 clients. A DHCPv6 server can not only assign an IPv6 address to a DHCPv6 client, but also assign an IPv6 prefix to it. As shown in figure 1, after the DHCPv6 server assigns an IPv6 prefix to the DHCPv6 client, the DHCPv6 client betwerk assign an RA message containing the prefix information to the network, so that hosts on the network automatically configure an IPv6 address based on the prefix.

DHCPv6 relay: The DHCPv6 client communicates with the DHCPv6 server through the link-local multicast address to obtain IPv6 addresses and other network configuration parameters. If the server and the client are not on the same link, you need to forward packets through the DHCPv6 relay. This prevents the DHCPv6 server from being deployed on each link. This saves costs and facilitates centralized management.

17.5.1.2 DHCPv6 DUID Configuration

The server uses the DUID (DHCP Unique Identifier) to identify different clients, and the client uses the DUID to identify the server. The contents of the client and server DUID are carried in the Client Identifier and Server Identifier options in the DHCPv6 message. The format of the two options is the same. The value of the option-code field is used to distinguish between the Client Identifier and the Server Identifier option. The minimum length is 12 bytes (96 bits) and the maximum length is 20 bytes (160 bits). The actual length depends on its type. The server compares the DUID to its database and sends the configuration data (address, lease, DNS server, etc.) to the client.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	duid {duid-llt duid-ll duid-en	Configure DUID.
	<1-4294967295> duid-uuid	
	<word>}</word>	
Step 3	show ipv6 dhcp duid	Display DUID
		configuration.
Setp 4	write	Save configuration.

17.5.2 DHCPv6 Server

17.5.2.1 DHCPv6 Address/Prefix Allocation Process

The process of assigning addresses/prefixes to clients by the DHCPv6 server is divided into two categories:

- Quickly allocation process with two messages exchanging.
- Allocation process with four messages exchanging.

Figure 2: Quickly allocation process with two messages exchanging As shown in figure 2, the address/prefix quick assignment process is:

(1) The DHCPv6 client carries the Rapid Commit option in the sent Solicit message, indicating that the client wants the server to quickly assign an address/prefix and network configuration parameters to it;

(2) If the DHCPv6 server supports the fast allocation process, it directly returns a Reply message to assign the IPv6 address/prefix and other network configuration parameters to the client. If the DHCPv6 server does not support the fast assignment process, the client is assigned an IPv6 address/prefix and other network configuration parameters using an assignment process that interacts with four messages.

Figure 3: Allocation process with four messages exchanging

Step	Message type	Description					
(1)	Solicit	The	DHCPv6	client	sends	the	message

		requesting the DHCPv6 server to assign an IPv6
		address/prefix and network configuration
		parameters to it.
(2)	Advertise	If the Rapid Commit option is not carried in the
		Solicit message, or the Rapid Commit option is
		carried in the Solicit message, but the server
		does not support the fast allocation process,
		the DHCPv6 server replies to the message,
		notifying the client of the address/prefix and
		network configuration parameters that can be
		assigned to it.
(3)	Request	If the DHCPv6 client receives Advertise
		messages from multiple servers, it selects one
		of the servers according to the order in which
		the messages are received, the server priority,
		etc., and sends a Request message to the
		server, requesting the server to confirm the
		address/prefix. And network configuration
		parameters
(4)	Reply	The DHCPv6 server replies to the message,
		confirming that the address/prefix and network
		configuration parameters are assigned to the

client.

17.5.2.2 DHCPv6 Server Lease Renewal Process

The IPv6 address/prefix assigned to the client by the DHCPv6 server has a certain lease term. The rental period is determined by the valid life period (Valid Lifetime). After the lease time of the address/prefix reaches the valid lifetime, the DHCPv6 client can no longer use the address/prefix. If the DHCPv6 client wishes to continue using the address/prefix before the valid lifetime expires, the address/prefix lease needs to be updated.

Figure 4: Update address/prefix lease by renew

As shown in Figure 4, when the address/prefix lease time arrival time T1 (the recommended value is half of the preferred lifetime Preferred Lifetime), the DHCPv6 client unicasts the Renew message to the DHCPv6 server that assigns the address/prefix to it. Update the address/prefix lease. If the client can continue to use the address/prefix, the DHCPv6 server responds with a successful Reply packet, informing the DHCPv6 client that the address/prefix lease has been successfully updated; if the address/prefix cannot be reassigned to the client, The DHCPv6 server responds with a Reply packet that failed to renew, notifying the client

that it cannot obtain a new lease.

Figure 5: Update address/prefix lease by rebind

As shown in Figure 5, if Renew is sent to update the lease at T1, but the response packet from the DHCPv6 server is not received, the DHCPv6 client will send all DHCPv6 to T2 (recommended value is 0.8 times of the preferred lifetime). The server multicasts the Rebind message and requests to update the lease. If the client can continue to use the address/prefix, the DHCPv6 server responds with a successful Reply message, informing the DHCPv6 client that the address/prefix lease has been successfully updated; if the address/prefix cannot be reassigned to the client, The DHCPv6 server responds to the Reply packet with the renewal failure, notifying the client that the new lease cannot be obtained. If the DHCPv6 client does not receive the response packet from the server, the client stops using the address/prefix after the valid lifetime expires.

17.5.2.3 DHCPv6 Server Stateless Configuration

The DHCPv6 server can assign additional network configuration

parameters to clients that already have an IPv6 address/prefix. This process is called a DHCPv6 stateless configuration.

After the DHCPv6 client successfully obtains an IPv6 address through the stateless auto-configuration function, the M flag (Managed address configuration flag) in the RA (Router Advertisement, Router Advertisement) packet is 0. If the other stateful configuration flag (1), the DHCPv6 client automatically starts the DHCPv6 stateless configuration function to obtain other network configuration parameters except the address/prefix.

Figure 6: DHCPv6 stateless configuration process

As shown in Figure 6, the specific process of DHCPv6 stateless configuration is as follows:

(1) The client sends an Information-request packet to the DHCPv6 server in multicast mode. The packet carries the Option Request option to specify the configuration parameters that the client needs to obtain from the server.

(2) After receiving the Information-request packet, the server allocates network configuration parameters to the client and sends a

Reply packet to the client to return the network configuration parameters to the client.

(3) The client provides the information provided in the Reply packet. If the configuration parameter is the same as the one specified in the Reply message, the network configuration is performed according to the parameters provided in the Reply packet. Otherwise, the parameter is ignored. If multiple Reply packets are received, the client selects the first reply packet and completes the stateless configuration of the client according to the parameters provided in the packet.

17.5.2.4 DHCPv6 Server Configurations

Begin at privileged configuration mode, configure DHCPv6 server as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ipv6 dhcp pool pool_name	Configure an IPv6 DHCP
		address pool.
Step 3	prefix-delegation	Configure prefix
	<x:x::x:x m=""> <x:x::x:x m=""></x:x::x:x></x:x::x:x>	delegation and its
	[lifetime	lifetime.
	<60-4294967295 infinite>	

	<60-4294967295 infinite>	>]	
Setp 4	address prefix		Configure IPv6 address
	<x:x::x:x m=""></x:x::x:x>	[lifetime	prdfix and its lifetime.
	<60-4294967295 infinite>	>	
	<60-4294967295 infinite>	>]	
Step 5	dns-sever <x:x::x:x></x:x::x:x>		Configure the DNS
			server IPv6 address.
Step 6	domain-name <word></word>		Configure domain
			name.
Step 7	nis address <x:x::x:x></x:x::x:x>		Configuring the NIS
			server IPv6 address.
Step 8	nis domain-name <worl< th=""><th>)></th><th>Configuring the NIS</th></worl<>)>	Configuring the NIS
			server domain name.
Step 9	nisp address <x:x::x:x></x:x::x:x>		Configure the NISP
			server IPv6 address.
Step 10	nisp domain-name <wor< th=""><th>RD></th><th>Configure the NISP</th></wor<>	RD>	Configure the NISP
			server domain name.
Step 11	ntp address <x:x::x:x></x:x::x:x>		Configure the NTP
			server IPv6 address.
Step 12	sip address <x:x::x:x></x:x::x:x>		Configure the SIP server
			IPv6 address.
Step 13	sip domain-name <worl< th=""><th>)></th><th>Configure the SIP server</th></worl<>)>	Configure the SIP server

		domain name.
Step 14	<pre>bcmcs address <x:x::x:x></x:x::x:x></pre>	Configuring the BCMCS
		server IPv6 address.
Step 15	bcmcs domain-name <word></word>	Configure the BCMCS
		server domain name.
Step 16	exit	Exit to global
		configuration mode.
Step 17	interface vlan vlan_id	Add VLAN and enter
		VLAN interface
		configuration.
		vlan_id(1—4094);
Step 18	<pre>ipv6 dhcp server pool_name</pre>	Configure and enable
	[preference <0-255 >] [allow-hint]	the DHCPv6 server
	[rapid-commit]	address of the network
		segment on the
		interface.
Step 19	exit	Exit to global
		configuration mode.
Step 20	show ipv6 dhcp pool	View DHCPv6 address
		pool information
Step 21	show ipv6 dhcp interface [vlan	Show information about
	<1-4094>]	the device DHCPv6

		interface
Step 22	show ipv6 dhcp binding	View the address
		binding information of
		the DHCPv6 address
		pool.
Step 23	write	Save configurations.

17.5.2.5 Example(pending)

17.5.3 DHCPv6 Relay

17.5.3.1 DHCPv6 Relay Work Processes

During the process of obtaining the IPv6 address/prefix and other network configuration parameters dynamically through the DHCPv6 relay, the DHCPv6 client and the DHCPv6 server are processed in the same way as when the DHCPv6 relay is not processed.

DHCPv6 relay forwarding process:

(1) The DHCPv6 client sends a request to the multicast address FF02::1:2 of all DHCPv6 servers and relays;

(2) After receiving the request, the DHCPv6 relay encapsulates the relay-forward packet in the relay message option and sends the relay-forward packet to the DHCPv6 server.

(3) The DHCPv6 server parses the client's request from the relay-forward packet, selects the IPv6 address and other parameters for the client, constructs a response message, and encapsulates the response message in the relay message option of the Relay-reply message. Send the Relay-reply message to the DHCPv6 relay.

(4) The DHCPv6 relay resolves the response from the server to the DHCPv6 client from the relay-reply packet. The DHCPv6 client performs network configuration based on the IPv6 address/prefix and other parameters assigned by the DHCPv6 server.

17.5.3.2 DHCPv6 Relay Configuration

Begin at privileged configuration mode, configure DHCPv6 relay as the following table shows.

208

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface vlan vlan_id	Add VLAN and enter
		VLAN interface
		configuration
		vlan_id(1-4094);
Step 3	ipv6 dhcp relay destination	Configure the DHCPv6
	<x:x::x:x></x:x::x:x>	relay server address on
		the network segment of
		the interface and enable
		the DHCPv6 relay
		service.
Setp 4	exit	Exit to global
		configuration mode.
Step 5	show ipv6 dhcp interface	Show information about
		the device DHCPv6
		interface.
Step 6	write	Save configurations.

17.5.3.3 DHCPv6 Relay Option 37 Configuration

Begin at privileged configuration mode, configure DHCPv6 relay option

Step 1	configure terminal	Enter global
		configuration mode.
	ipv6 dhcp relay remote-id option	Enable relay support
		option 38 option
		function
Step 2	interface vlan vlan_id	Add VLAN and enter
		VLAN interface
		configuration.vlan_id(1-
		4094);
Step 3	ipv6 dhcp relay remote-id	Configure the remote-id
	<word></word>	value of the custom
		option37.
	show ipv6 dhcp relay option	Display configuration
		information about trunk
		related options.
Setp 4	exit	Exit to global
		configuration mode
		comgulation mode.

37 as the following table shows.

17.5.3.4 DHCPv6 Relay Option 38 Configuration

Begin at privileged configuration mode, configure DHCPv6 relay option 38 as the following table shows.

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
	ipv6 dhcp relay subscriber-id	Enable relay support	
	option	option 38 option	
		function	
Step 2	interface vlan vlan_id	Add VLAN and enter	
		VLAN interface	
		configuration.vlan_id(1-	
		4094);	
Step 3	ipv6 dhcp relay subscriber-id	Configure the custom	
	<word></word>	subscriber-id value of	
		option38.	
	show ipv6 dhcp relay option	Display configuration	
		information about trunk	
		related options.	
Setp 4	exit	Exit to global	
		configuration mode.	

Step 5	write	Save configurations.
•		0

17.6 IPv6 Route

17.6.1 IPv6 Static Route Configuration

IPv6 Static Routes Introduction

A static route is a special type of route that is manually configured by an administrator. When the network structure is relatively simple, you only need to configure a static route to make the network work normally. Static routes cannot automatically adapt to changes in network topology. After the network fails or the topology changes, the configuration must be manually modified by the network administrator. IPv6 static routes are similar to IPv4 static routes and are suitable for some IPv6 networks with simple structures.

Default Routes Introduction

The IPv6 default route is the route used when the router does not find a matching IPv6 routing entry. There are two ways to generate IPv6 default routes:

The first type is manually configured by the network administrator.
The function address specified during configuration is ::/0 (prefix

length is 0).

The second type is dynamic routing protocol generation (such as OSPFv3, IPv6 IS-IS, and RIPng). Routers with strong routing capabilities advertise IPv6 default routes to other routers. Other routers generate pointers to them in their routing tables. The default route of the router.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ipv6 route <x:x::x:x m=""></x:x::x:x>	Add a static route.
	<x:x::x:x></x:x::x:x>	
Setp 3	no ipv6 route <x:x::x m=""></x:x::x>	Delete static route.
	<x:x::x:x></x:x::x:x>	
Step 4	show ipv6 route	Show current routing
		configuration

17.6.2 View IPv6 Hardware Routing Information

	Command	Function	
Step 1	configure terminal	Enter glob	bal
		configurat	tion mode.
Step 2a	show ipv6 I3 defip route	View IP	v6 hardware
		subnet	routing

		information.
Step 2b	show ipv6 I3 hostroute	View IPv6 hardware
		host routing
		information.
Step 2c	show I3 interface	View interface
		information.

17.7 IPv6 Connectivity Test

Ping6 is mainly used to check network connectivity and host reachability

for IPv6.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ping6 <x:x::x:x> [-i vlan <1-4094>]</x:x::x:x>	Packetize: The length of
	[-s <packetsize>]</packetsize>	the packet to be sent, in
		bytes. Ping the link local
		address to specify the
		interface.

18PON Management

18.2 Show PON Port Info and Optical Power

18.2.1 Show Pon Port Statistics

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	show pon statistics	Show PON port
		statistics.

18.2.2 Show PON Port Optical Power

Optical module parameters contain transmit optical power, receive optical power, temperature, voltage and bias current. These 5 parameters decide whether the optical module can work normal or not. Any of them is abnormal may cause ONU deregister or lose packets. Begin at privileged configuration mode, show PON port optical module parameters as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
_		configuration mode.
Step 3	show pon optical transceiver	Show pon optical
		parameters.

18.2.3 Show ONU Optical Transceiver

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	show pon onu [<1-128> all]	Show ONU optical
	rx-power	transceiver

18.3 PON Port Configuration

18.3.1 Enable/Disable PON

Begin at privileged configuration mode, enable or disable PON port as
the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	Shutdown	Disable pon port
Step 3b	No shutdown	Enable pon port
Step 4	show pon info	Show pon info

17.1 ONU auto-learn configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu auto-learn	Enable the auto-learn
	{default-onu-profile	function.lt support to
	<profile_name>}*1</profile_name>	select onu profile.will
		bind the default profile
		if not select.
Step 3b	no onu auto-learn	Disable the auto-learn
Step 4	show onu auto-learn	Show the auto-learn

打开或者关闭 PON 口的 ONU 自动授权功能。

Note: After the ONU is auto-learned, there will be ONU connected to this PON port. The OLT will check whether there is equipment ID in the auto-binding list. If the equipment ID of this ONU is in the auto-binding list, the ONU uses the information of auto-binding list to register.

190NU Management

19.2 ONU Basic Configuration

19.2.1 Show Auto-find ONU

	Command		Function
Step 1	configure terminal		Enter global
			configuration mode.
Step 2	interface gpon slot/p	port	Enter PON interface
			configuration mode.
Step 3	Show onu auto-find		Show auto-find ONU
	show onu	auto-find	Show auto-find ONU
	{[detail-info]}*1		detail info

19.2.2 ONU Automatic Authorize

OLT can enable/disable automatic authorized mode. ONU will authorized automatically when ONU online

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.

Step 4	Show onu auto-learn		Show auto-learn
	<profile_name>}*1</profile_name>		
	{default-onu-profile		auto-auth
Step 3	onu	auto-learn	Enable/disable
_			configuration mode.
Step 2	interface gpon slot/port		Enter PON interface

19.2.3 Show ONU Authorized Info

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	Show onuinfo [<1-128>]*1	Show ONU authorized
		info

19.2.4 Show ONU Authorized Detail-info

It can show ONU Vendor ID, Version, SN, product Code.....

-	Command	Function
Step 1	configure terminal	Enter global

		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	Show onu detail-info {<1-128>}*1	Show a onu detail-info
		or can select a range

19.2.5 Activate | Deactivate ONU

ONU will online/offline when you activate/deactivate ONU

	Command		Function
Step 1	configure terminal		Enter global
			configuration mode.
Step 2	interface gpon slot/po	ort	Enter PON interface
			configuration mode.
Step 3a	onu	[all <1-128]	Activate/deactivate
	[activate deactivate]		ONU on pon port

19.2.6 ONU Authorization

Command	Function
---------	----------

Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu add <1-128> profile	Authorize ONU
	<onu_profile_name></onu_profile_name>	
	[hpw loid+hpw loid+pw loid pw	
	sn+hpw sn+pw sn]	

19.2.7 Configure ONU Description String

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	onu <onuid> description <string></string></onuid>	Add description string
		to ONU.
Step 4	<pre>show onu <onuid> description</onuid></pre>	Show ONU description.

19.3 ONU Remote Configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	show onu <1-128> optical-info	Show onu SFP info

19.3.1 Show ONU SFP Info

19.3.2 Upgrade ONU

Only ONU had authorized on OLT, ONU can upgrade.

Command	Function
configure terminal	Enter global
	configuration mode.
upgrade load image <filename></filename>	Configure ONU
<a.b.c.d></a.b.c.d>	firmware name and
	TFTP server.
upgrade select pon <pon_num></pon_num>	Select ONU. ONU ID
{ <onuid_list>}*1</onuid_list>	format is 1-2.
	Command configure terminal upgrade load image <filename> <a.b.c.d> upgrade select pon <pon_num> {<onuid_list>}*1</onuid_list></pon_num></a.b.c.d></filename>

Step 4	upgrade start	Download ONU
	[download active commit mix]	firmware and save in
		memory, and then
		update ONU.
Step 5	upgrade stop	Delete the firmware in
		memory, and detele the
		upgrader info
Step 6	<pre>show upgrade [status info </pre>	Show the upgrade
	onu-version] {pon <1-8>	status, upgrade info and
	<onu_list>}*1</onu_list>	firmware info

Notice:

1. DO NOT turn power off when updating. After finishing update, OLT will inform ONU if updated successfully and reset ONU with the new firmware.

2. After ONU updated and restarted, OLT will send commit command to confirm the new version.

3. Please delete the firmware and upgrade settings by command upgrade onu stop.

4. Display ONU upgrade progress by command show upgrade onu status.

5. Display ONU upgrade settings by command **show upgrade onu info**.

6. Stop upgrading ONU by command **upgrade onu stop**.

19.3.3 Auto-upgrade ONU

OLT will compared equipment id with onu info, if they are consistent,

will start to upgrade

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	auto-upgrade onu equipment_id	Configure the onu
	<string> version <string> image</string></string>	equipment, id ,
	<filename> <a.b.c.d></a.b.c.d></filename>	version ,file name ,file
		address
Step 3	no auto-upgrade onu	Delete the onu
	equipment_id <string></string>	equipment
Step 4	show auto-upgrade	Show the auto-upgrade
	[status config]	

19.3.4 Reboot ONU

Reboot the ONU which had authorized

Command	Function
---------	----------

Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu [all <1-128> reboot	Reboot one of ONU or
		all of onu on PON

19.3.5 TCONT Configuration

Create/modify a TCONT, and bind to DBA profile.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
_		configuration mode.
Step 3a	onu <1-128> tcont <1-255>	Configure ONU TCONT
	{[name] <string>}*1 {[dba]</string>	and dba you had
	<string>}*1</string>	created.
Step 3b	no onu <1-128> tcont <1-255>	Delete TCONT
Step 4	<pre>show onu <onuid> tcont</onuid></pre>	Show ONU TCONT

	Command	Function
Step 1	configure terminal	Enter global
_		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
_		configuration mode.
Step 3a	onu <1-128> gemport <1-255>	Configure GEMPORT to
	[tcont] <1-255> {[gemport_name]	bind a TCONT. And can
	<gemport_name>}*1 {[portid]</gemport_name>	select portid and queue
	<129-4095>}*1 {[queue] <0-7>}*1	id
Step 3b	onu <1-128> gemport <1-255>	Configure GEMPORT to
	[traffic-limit] upstream	bind a traffic limit
	<dba_name> downstream</dba_name>	profile
	<dba_name></dba_name>	
Step 3c	onu <1-128> gemport <1-255>	Enable/disable
	[state] [enable disable]	gemport₀
Step 3d	onu <1-128> gemport <1-255>	Configure GEMPORT
	[down-queue-map-id] <0-7>	up/down queue
	up-queue-map-id <0-3>	
Step 3e	onu <1-128> gemport <1-255>	Configure GEMPORT

	encrypt [disable enable]	encrypt
	{[downstream bidirection]}*1	
Step 4	no onu <1-128> gemport <1-255>	Delete ONU GEMPORT
Step 5	show onu <onuid> gemport</onuid>	Show ONU GEMPORT
		configuration

19.3.7 ONU Service Configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu <1-128> service	Configure ONU service
	<service_name> gemport <1-255></service_name>	with vlan
	[vlan] <vlan_list> {[iphost]</vlan_list>	
	<1-255>}*1 {[ethuni] lan <1-32>}*1	
	{[cos] <cos_list>}*1</cos_list>	
Step 3b	onu <1-128> service	Configure ONU service
	<service_name> gemport <1-255></service_name>	without vlan
	[untag] {[ethuni] lan <1-32>}*1	

	{[iphost] <1-255>}*1	
Step 4	no onu <1-128> service	Delete ONU service
	<service_name></service_name>	

19.3.8 Service-port Configuration

Configure the service-port .

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan	transparent mode
	<1-4094> {[to] <1-4094>}*1	
	transparent	
Step 3b	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan	translate mode
	<1-4094> [user_priority] <0-7>	
	[vlan] <1-4094> {[new_cos]	
	<0-7>}*1	
Step 3c	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan	translate mode and

	<1-4094> [vlan] <1-4094>	QinQ
	{[new_cos] <0-7>}*1 {[svlan]	
	<1-4094>}*1 {[new_scos] <0-7>}*1	
Step 3d	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan	translate mode and
	<1-4094> [user_etype]	QinQ.can select the type
	[pppoe ipoe] [vlan] <1-4094>	of packets
	{[new_cos] <0-7>}*1 {[svlan]	
	<1-4094>}*1 {[new_scos] <0-7>}*1	
Step 3e	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan	translate mode and
	<1-4094> [user_etype]	QinQ.can select the type
	[user_define] <eth_type> [vlan]</eth_type>	that user define.
	<1-4094> {[new_cos] <0-7>}*1	
	{[svlan] <1-4094>}*1 {[new_scos]	
	<0-7>}*1	
Step 3f	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan untag	untagged mode, can
	[user_etype] [user_define]	configure QinQ and type
	<eth_type> [vlan] <1-4094></eth_type>	that user define.
	{[new_cos] <0-7>}*1 {[svlan]	
	<1-4094>}*1 {[new_scos] <0-7>}*1	

Step 3g	onu <1-128> service-port <1-128>	Configure the vlan
	gemport <1-128> uservlan untag	untagged mode,can
	[vlan] <1-4094> {[new_cos]	configure QinQ
	<0-7>}*1 {[svlan] <1-4094>}*1	
	{[new_scos] <0-7>}*1	
Step 4	onu <1-128> service-port <1-128>	Enable/disable
	admin-status [enable disable]	service-port
Step 5	onu <1-128> service-port <1-128>	Configure the
	description <desc></desc>	service-port description
Step 6	no onu <1-128> service-port	Delete the service-port
	<1-128>	

19.3.9 ONU UNI Configuration

Include LAN, VEIP, IPHOST

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.

Step 3a	onu <1-128> portvlan	Configure the UNI mode
	[eth wifi veip] <1-32> [mode]	is transparent
	[transparent]	
Step 3b	onu <1-128> portvlan	Configure the UNI mode
	[eth wifi veip] <1-32> [mode]	is trunk
	[trunk]	
Step 3c	onu <1-128> portvlan	Configure the UNI mode
	[eth wifi veip] <1-32> [mode]	is access and bind a vlan
	[tag] vlan <1-4094> {pri <0-7>}*1	
Step 3d	onu <1-128> portvlan	Configure the UNI mode
	[eth wifi veip] <1-32> [mode]	is hybrid and bind a vlan
	[hybrid] def_vlan <1-4094>	
	{def_pri <0-7>}*1	
Step 3e	onu <1-128> portvlan	Configure the list of UNI
	[eth wifi veip] <1-32> [vlan]	vlan
	<vlan_list></vlan_list>	
Step 3f	onu <1-128> portvlan	Configure the UNI mode
	[eth wifi veip] <1-32> [translate]	is translate
	[vlan] <1-4094> [cvlan] <1-4094>	
	{[cvlan_pri] <0-7>}*1 [svlan]	
	<1-4094> {[svlan_pri] <0-7>}*1	

19.3.10 ONU FEC Configuration

Enable/disable ONU FEC

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	onu <1-128> fec [enable disable]	Enable/disable ONU FEC

19.3.11 Show ONU Service

	Comman	d		Function
Step 1	configure	terminal		Enter global
				configuration mode.
Step 2	interface	gpon slot/port		Enter PON interface
_				configuration mode.
Step 3	show	running-config	onu	Show ONU Service
	{<1-128>}	*1		

19.3.12 Show ONU Capability

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	show onu [<1-128> all] capability	Show ONU capability

19.4 ONU Remote Port Configuration

19.4.1 ONU Port Enable | Disable

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	onu <1-128> eth <1-32> {[state]	Disable/enable port
	[disable enable]}*1	

19.4.2 ONU Port Autonegotiation

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.

Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	onu <1-128> eth <1-32> {[speed]	ONU port
	[auto full-10 full-100 full-1000 h	autonegotiation
	alf-10 half-100]}*1	

19.4.3 ONU Port Flow Control Configuration

Begin at privileged configuration mode, configure ONU port flow control as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3	onu <onuid> eth <port-num></port-num></onuid>	Configure flow control
	{[pause-time] <0-65535>}*1	

19.4.4 Multicast VLAN Configuration

Command Fun	ction
-------------	-------

Step 1	configure terminal		Enter global		
_					configuration mode.
Step 2	inter	face gpo	n slot/port		Enter PON interface
					configuration mode.
Step 3a	onu <1-128> mvlan <vlanlist></vlanlist>			.ist>	Add a multicast vlan
Step 3b	no	onu	<1-128>	mvlan	Delete multicast vlan
	[all <	vlanList	>]		

19.4.5 Configure ONU Iphost

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
_		configuration mode.
Step 3a	onu <1-128> iphost <1-255> [id]	Configure iphost
	<desc></desc>	descible
Step 3b	onu <1-128> iphost <1-255>	Configure to dhcp mode
	[dhcp]	
Step 3c	onu <1-128> iphost <1-255>	Configure to static
	[static-ip] <a.b.c.d> <a.b.c.d></a.b.c.d></a.b.c.d>	mode, and subnet, GW

	{ <a.b.c.d>}*1</a.b.c.d>		
Step 3d	onu <1-128> iphost	<1-255>	Configure the dns
	[primary-dns]	<a.b.c.d></a.b.c.d>	
	{second-dns <a.b.c.d>}*</a.b.c.d>	1	
Step 3e	no onu <1-128> iphost <	:1-255>	Delte the iphost
			configuration

19.4.6 ONU Port Multicast Tag-strip Configuration

	Command	Function
Step 1	configure terminal	Enter global
_		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	onu <1-128> mvlan [tag-strip] eth	Configure the multicast
	<1-32>	tag-strip
Step 3b	no onu <1-128> mvlan [tag-strip]	Delete the configuration
	eth <1-32>	

19.4.7 Example for SFU

1GE ONU with vlan 100. Uplink DBA mode: assured 10M, maximum 20M. Gemport 1 with downlink 20M.

1. Create a onu profile with 1 eth port

Profile onu name 1GE_SFU

Port eth 1

Commit

Exit

2. Create a dba profile with assured 10M max 20M

Profile dba name 20M

Type 3 assured 10240 maximum 20480

Exit

3. Create a traffic profile to limit the downlink speed

Profile traffic name DN_20M

Sir 20480 pir 20480

Exit

4. Register onu and configure the service

Interface gpon 0/1

Show onu auto-find

Onu add 1 profile 1GE_SFU sn GPON0000031

Onu 1 tcont 1 dba 20M

Onu 1 gemport 1 tcont 1

Onu 1 gemport 1 traffic-limit upstream default downstream

DN_20M

Onu 1 service 1 gemport 1 vlan 100

Onu 1 service-port 1 gemport 1 user-vlan 100 vlan 100

Onu 1 portvlan eth 1 mode tag vlan 100

5. Create vlan 100

Vlan 100

Exit

Bind the vlan to uplink port
 Interface gigabitethernet 0/10
 Switchport hybrid pvid vlan 100

19.4.8 Example for HGU

4FE ONU with vlan 41 and vlan 46. Uplink DBA mode: assured 10M, maximum 20M. Gemport 1 with downlink 20M. vlan 46 is for tr069 , DBA mode: fixed 2M

1. Create a onu profile with 1 veip port

Profile onu name HGU

Port veip 1

Commit

Exit

2. Create a dba profile

Profile dba name 20M

Type 3 assured 10240 maximum 20480

Exit

Profile dba name 2M

Type 1 fixed 2048

Exit

3. Create a traffic profile to limit the downlink speed

Profile traffic name DN_20M

Sir 20480 pir 20480

Exit

4. register onu and configure the service

Interface gpon 0/1

Show onu auto-find

Onu add 1 profile HGU sn GPON00000AB

Onu 1 tcont 1 dba 20M

Onu 1 tcont 2 dba 2M

Onu 1 gemport 1 tcont 1

Onu 1 gemport 1 traffic-limit upstream default downstream

DN_20M

Onu 1 service HSI gemport 1 vlan 41 Onu 1 service-port 1 gemport 1 user-vlan 41 vlan 41 Onu 1 gemport 2 tcont 2 Onu 1 service TR69 gemport 2 vlan 46 Onu 1 service-port 2 gemport 2 user-vlan 46 vlan 46 Onu 1 portvlan veip 1 mode transparent

5. Create vlan 41 and 46, bind to uplink port

Vlan 41

Exit

Vlan 46

Exit

Interface gigabitethernet 0/10

Switchport mode trunk

Switchport trunk vlan 41

Switchport trunk vlan 46

6. Login to onu webinterface, create two WAN connection, one is internet with vlan41; another one is tr069 with vlan46

19.5 Rogue-onu Configuration

We called this rogue ONT which does not follow the assigned timestamp to send up the optical signal.

Rogue ONT mainly divided into the following two types:

1) The long Lighting rogue ont: ONT is lighting (glowing at any moment).

2) Luminous rogue ont: Lighting in OLT non allocation of the timestamp, may be light in advance, or delay to turn off and so on.

19.5.1 Rogue-onu-detect

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2	rogue-onu-detect [enable disable]	Enable/disable	
	locate [enable disable]	detect/locate/auto-shud	
	auto-shutdown [enable disable]	own function	
Step 3	show rogue-onu-detect config	Show the configuration	
Step 4	show rogue-onu-detect info pon	Show the result	
	<1-8>		

19.5.2 Rogue-onu status

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	rogue-onu-state pon <1-8> onu	Configure the rogue-onu
	<1-128> [on off shutdown]	online/offline/shutdown
	duration [forever <1-255>]	and duration time
Step 3	show rogue-onu-detect config	Show the configuration

200NU Template Management

20.2 Summary of ONU Template

Template under "config" node, the operation steps are as follows:

1.Create a template

profile [onu|dba|traffic|line|srv|voip|alarm] {id <1-32767>}*1 {name

<string>}*1

2.Through profile_id into the corresponding template node

profile [onu|dba|traffic|line|srv|voip|alarm] {id <1-32767>}*1 {name

<string>}*1

3. Modify the template parameters

modify ...

4.Exit template node

exit

5.Binding template to an onu equipment

Interface gpon slot/port

onu add 1 profile <string>

onu <onuid> profile [line|srv] <string>

6. Query onu equipment binding template

Interface gpon slot/port

show profile [onu|dba|traffic|line|srv|voip|alarm] {id <1-32767>}*1

{name <string>}*1

7. query template configuration information

Show profile [onu|dba|traffic|line|srv|voip|alarm] {id <1-32767>}*1 {name <string>}*1 used-info

20.3 ONU Template Configuration

The ONU template is used for onu authorization, and each ONU must sp ecify only one ONU template when authorizated. The ONU template spe cifies the capability of this ONU.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	profile onu { <i>id</i> <1-32767>}*1 { <i>name</i>	Create or enter the onu
	<string>}*1</string>	profile you had created
		before.
Step 3a	tcont-num <1-255> gemport-num	Configure the onu
	<1-255>	support max tcont and
		gemport.
Step 3b	switch-num <1-255> flow-num	Configure the onu
	<1-255>	support max switch and
		flow
Step 3c	port-num {[eth] <0-64>}*1 {[pots]	Configure the onu

	<0-64>}*1 {[iphost] <0-255>}*1	support
	{[ipv6host] <0-255>}*1 {[veip]	eth/pots/iphost/ipv6hos
	<0-127>}*1	t/veip
Step 3d	service-ability n:1 [yes/no] 1:p	Capability profile
	[yes no] 1:m [yes no]	
Step 4	commit	Commit the profile.only
		enter "commit"can
		submit the setting
Step 5	exit	

20.4 DBA Template Configuation

The default system will have an id 0 dba template, this template parameters cannot be modified, all onu when create the default binding in the template.Each ONU must bind a dba template.

It have 5 dba filre:

Typr1: fix, integral

Type2: assure, integral

Type5: fix, assure, max, integral

Fix<=assure<=max.

	BW Type		Delay	Applicable T-CONT types					
			Sensitive	Type 1	Type 2	Type 3	Type 4	Type 5	
	Fixed		Yes	х				x	
	Ass	ured	No		x	х		x	
	Non-Assured		No			х		x	
	Best Effort		No			-	x	x	
	Max.		No			х	х	x	
		Comm	nand			Functi	Function		
St	Step 1 config		gure termina	I		Enter (Enter global		
					config	configuration mode.			
Step 2 profile dba {id <1-3		2767>}*	1 {name	Create	Create/modify a dba				
	<string>}*1</string>				profile				
St	Step 3a type [1] fixed <64-24		2488320	>	Config	ure type	1 with		
				fixed					
St	ep 3b	type [2	2] assured <6	54-2488320> Configure type 2 wi		2 with			
				assure	d				
St	tep 3c type [3] assured <64-2488320>		Config	Configure type 3 with					
	maximum <64-2488		38320> assured and maxi		aximum				
St	ep 3d	type [4] maximun	n <64-24	488320>	Config	ure type	4 with	
	{[priority]		ity] <1-4>	>}*1 {[weight]		maxim	maximum		
	<1-1000>}*1								

Step 3e	type [5] fixed <64-2488320>	Configure type 5 with
	assured <64-2488320> maximum	fixed, assured,
	<64-2488320> {[priority] <1-4>}*1	maximum.
	{[weight] <1-1000>}*1	

20.5 Traffic Template Configuation

The default system will have an id 0 traffic template, this template parameters cannot be modified, all GEMPORT when create the default binding in the template.Each GEMPORT must bind a traffic template.

parameter	Detail	Range
Sir	sustained information	0-10000000kbps
	rate	
Pir	Peak information rate	64-10000000kbps
Cbs	Committed Burst Size	0-1023kbytes
pbs	Peak Burst Size	0-1023kbytes

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	profile traffic {id <1-32767>}*1	Creat/modify a traffic
	{name <string>}*1</string>	profile

Step 3	sir	<0-10000000>	pir	Configure the sir and
	<64-1000	00000> {cbs <0-1023>	pbs	pri, cbs and pbs is
	<0-1023>	>}*1		selectable.
Step 4	Exit			Exit

20.6 Line Template Configuation

The default system will have an id 0 LINE template, this template parameters cannot be modified,

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	profile line { <i>id</i> <1-32767>}*1 { <i>name</i>	Create/modify a line
	<string>}*1</string>	profile
Step 3a	tcont <1-255> {[name] <string>}*1</string>	Bind a tcont profile
	{[dba] <string>}*1</string>	
Step 4a	gemport <1-255> [tcont] <1-255>	Bind a gemport profile
	{[gemport_name]	
	<gemport_name>}*1 {[portid]</gemport_name>	
	<129-4095>}*1 {[queue] <0-7>}*1	
Step 4b	gemport <1-255> [encrypt]	Enable/disable the
	[enable disable]	gemport encrypt.by

		default, is enable
Step 4c	gemport <1-255> [state]	Enable/disable the
	[enable disable]	gemport state
Step 4d	gemport <1-255> [traffic-limit]	Bind a up/downstream
	upstream <dba_name></dba_name>	limit to gemport
	downstream <dba_name></dba_name>	
Step 5a	<pre>service <service_name> gemport</service_name></pre>	Bind a gemport which
	<1-255> [vlan] <vlan_list> {[iphost]</vlan_list>	with vlan to service
	<1-255>}*1 {[ethuni] lan <1-32>}*1	
	{[cos] <cos_list>}*1</cos_list>	
Step 5b	<pre>service <service_name> gemport</service_name></pre>	Bind a gemport without
	<1-255> [untag] {[ethuni] lan	vlan to service
	<1-32>}*1 {[iphost] <1-255>}*1	
Step 5c	mvlan <vlanlist></vlanlist>	Create the multicast
		vlan
Step 6a	service-port <1-128> gemport	Configure the vlan
	<1-128> uservlan <1-4094> {[to]	mode to transparent
	<1-4094>}*1 transparent	
Step 6b	service-port <1-128> gemport	Configure the vlan
	<1-128> uservlan <1-4094>	mode to translate
	[user_priority] <0-7> [vlan]	
	<1-4094> {[new_cos] <0-7>}*1	

Step 6c	service-port <1-128> gemport	Configure the vlan
	<1-128> uservlan <1-4094> [vlan]	mode to translate,QinQ
	<1-4094> {[new_cos] <0-7>}*1	
	{[svlan] <1-4094>}*1 {[new_scos]	
	<0-7>}*1	
Step 6d	service-port <1-128> gemport	Configure the vlan
	<1-128> uservlan <1-4094>	mode to
	[user_etype] [pppoe ipoe] [vlan]	translate,QinQ,can
	<1-4094> {[new_cos] <0-7>}*1	select the type of data
	{[svlan] <1-4094>}*1 {[new_scos]	
	<0-7>}*1	
Step 6e	service-port <1-128> gemport	Configure the vlan
Step 6e	service-port <1-128> gemport <1-128> uservlan <1-4094>	Configure the vlan mode to
Step 6e	service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define]	Configure the vlan mode to translate,QinQ,can
Step 6e	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094></eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user
Step 6e	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan]</eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define
Step 6e	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan] <1-4094>}*1 {[new_scos] <0-7>}*1</eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define
Step 6e Step 6f	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan] <1-4094>}*1 {[new_scos] <0-7>}*1 service-port <1-128> gemport</eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define Configure the vlan
Step 6e Step 6f	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan] <1-4094>}*1 {[new_scos] <0-7>}*1 service-port <1-128> gemport <1-128> uservlan untag</eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define Configure the vlan mode to
Step 6e Step 6f	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan] <1-4094>}*1 {[new_scos] <0-7>}*1 service-port <1-128> gemport <1-128> uservlan untag [user_etype] [user_define]</eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define Configure the vlan mode to untag,QinQ,can select
Step 6e Step 6f	<pre>service-port <1-128> gemport <1-128> uservlan <1-4094> [user_etype] [user_define] <eth_type> [vlan] <1-4094> {[new_cos] <0-7>}*1 {[svlan] <1-4094>}*1 {[new_scos] <0-7>}*1 service-port <1-128> gemport <1-128> uservlan untag [user_etype] [user_define] <eth_type> [vlan] <1-4094></eth_type></eth_type></pre>	Configure the vlan mode to translate,QinQ,can select the type that user define Configure the vlan mode to untag,QinQ,can select the type that user

	<1-4094>}*1 {[new_scos] <0-7>}*1	
Step 6g	service-port <1-128> gemport	Configure the vlan
	<1-128> uservlan untag [vlan]	mode to untag,QinQ
	<1-4094> {[new_cos] <0-7>}*1	
	{[svlan] <1-4094>}*1 {[new_scos]	
	<0-7>}*1	
Step 6h	service-port <1-128> admin-status	Enable/disable
	[enable disable]	service-port
Step 6l	service-port <1-128> description	Add the service-port
	<desc></desc>	description
Step 7	no onu <1-128> service-port	Delete the service-port
	<1-128>	
Step 8	no mvlan [all <vlanlist>]</vlanlist>	Delete the multicast
		vlan
Step 9	no tcont <1-255>	Delete the tcont
Step 10	no gemport <1-255>	Delete the gemport
Step 11	no service <service_name></service_name>	Delete the service
Step 12	commit	Commit the
		configuration
Step 13	Exit	Exit
20.7 Service Template Configuation

The default system will have an id 0 SRV template, this template parameters cannot be modified

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	profile srv { <i>id</i> <1-32767>}*1 { <i>name</i>	Create/modify sre
	<string>}*1</string>	profile
Step 3a	portvlan [eth wifi veip] <1-32>	Configure portvlan
	[mode] [transparent]	mode to transparent
Step 3b	portvlan [eth wifi veip] <1-32>	Configure portvlan
	[mode] [trunk]	mode to trunk
	portvlan [eth wifi veip] <1-32>	Configure portvlan
	[mode] [tag] vlan <1-4094> {pri	mode to tag,and
	<0-7>}*1	configure pri
	portvlan [eth wifi veip] <1-32>	Configure portvlan
	[mode] [hybrid] def_vlan <1-4094>	mode to hybrid
	{def_pri <0-7>}*1	
	portvlan [eth wifi veip] <1-32>	Configure portvlan
	[translate] [vlan] <1-4094> [cvlan]	mode to translate

	<1-4094> {[cvlan_pri] <0-7>}*1	
	[svlan] <1-4094> {[svlan_pri]	
	<0-7>}*1	
Step 4a	mvlan [tag-strip] eth <1-32>	Configure the lan port
		to untag mode
Step 4b	no mvlan [tag-strip] eth <1-32>	Delete the the lan port
		to untag mode
Step 5a	iphost <1-255> [id] <desc></desc>	Configure the iphost
		description
Step 5b	iphost <1-255> [dhcp]	Configure the iphost to
		dhcp mode
Step 5c	iphost <1-255> [static-ip]	Configure the iphost to
	<a.b.c.d> <a.b.c.d> {<a.b.c.d>}*1</a.b.c.d></a.b.c.d></a.b.c.d>	static mode.
Step 5d	iphost <1-255> [primary-dns]	Configure the DNS
	<a.b.c.d> {second-dns</a.b.c.d>	
	<a.b.c.d>}*1</a.b.c.d>	
Step 5e	no iphost <1-255>	Delete the iphost
		setting
Step 6	Commit	Commit the
		configuration
Step 7	Exit	Exit

20.8 Alarm Threshold Template Configuration

Alarm threshold only can be configured by template. Begin at privileged configuration mode, configure alarm threshold template as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	profile alarm {id <1-32767>}*1	Create or enter a profile
	{name <string>}*1</string>	
Step 3a	sf-sd-threshold sf <3-8> sd <4-10>	Configure the range of
		sf and sd
Step 3b	rx-optical low <-27~-8> upper	Configure the range of
	<-27~-8>	rx-optical
Step 3c	Tx-optical low <0-5> upper <0-5>	Configure the range of
		tx-optical
Step 4	Commit	Commit the
		configuration
Step 5	Exit	Exit

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	no profile {dba srv voip alarm}	Delete profile
	id <1-32767>	
Step 3a	show profile	Show profile
	{dba srv voip alarm} all id	
	<0-65535> }	
Step 3b	show profile	Show the onu which
	{dba srv voip alarm} id	binding profile
	<i><0-65535></i> bind	

20.9 Show/Delete Profile Configuration

210NU Auto-learn Configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	onu auto-learn bind onu-profile	Bind the equipment id
	<equipid> <onu_profile></onu_profile></equipid>	with onu profile
Step 3	onu auto-learn bind	Bind the onu equipment
	(line-profile srv-profile alarm-prof	with line/srv/alarm
	ile) <equipid> <profile_name></profile_name></equipid>	profile
Step 4	no onu auto-learn bind	Delete the binding
	onu-profile <equipid></equipid>	setting
Step 5	no onu auto-learn bind	Delete the binding
	(line-profile srv-profile alarm-prof	setting
	ile) <equipid></equipid>	
Step 6	show onu auto-learn bind	Show the equipment
	{[onu-profile line-profile srv-profil	and profile
	e alarm-profile]}*1	

21.2 ONU Auto-learn

21.3 Enable Auto-learn

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2	interface gpon slot/port	Enter Gpon interface	
Step 3a	onu auto-learn	Enable auto-learn and	
	{default-onu-profile	select a profile.	
	<profile_name>}*1</profile_name>		
Step 3b	no onu auto-learn	Disable auto-learn	
Step 4	show onu auto-learn	Show auto-learn	
		configuration	

22System Management

22.2 Configuration Management

22.2.1 Save Configurations

After modified the configurations, you should same them so that these configurations can take effect next time it restarts. Use the following commands to save configurations.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	write	Save configurations.

22.2.2 Erase Configurations

If you need to reset to factory default, you can use the following commands to erase all configurations. After erased, the device will reboot automatically.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	erase startup-config	Erase all configurations.

22.2.3 Show Startup Configurations

Use the following command to display the configurations you have saved.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	show startup-config	Show configuration

22.2.4 Show Running Configurations

Use the following commands to display running configurations. These running configurations may not be saved in flash.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	show running-config	Show running
		configurations.

22.2.5 Upload/Download Configuration File

Use the following commands to upload configuration file to PC and download configuration file to device.

	Command	Function
Step 1	configure terminal	Enter global

				configuration mode.
Step 2	debug mod	е		Enter debug node
Step 3a	upload	tftp	configuration	filename is Upgrade file
	<filename> <a.b.c.d></a.b.c.d></filename>		A.B.C.D is TFTP server IP	
Step 3b	download	tftp	configuration	filename is Upgrade file
	<filename></filename>	<a.b.c.l< th=""><th>)></th><th>A.B.C.D is TFTP server IP</th></a.b.c.l<>)>	A.B.C.D is TFTP server IP

22.3 Check System Information

22.3.1 Check System Running Information

Use the following commands to view system information.

Command	Function
show sys arp	Show ARP table
show sys cpu	Show CPU information
show sys cpu-usage	Show CPU usage rate
show sys mem	Show system memory
show sys ps	Show system process
show top	Show CPU utilization
show task	Showthread name

22.3.2 Check Version Information

Use the following commands to check version information which includes hardware version, software version, software created time and

so on.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	show version	Show version information.

22.3.3 Check System Running Time

Use the following command to show system running time after turned power on.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	show sys running-time	Show system running
		time.

22.4 System Basic Configurations

22.4.1 Configure System Name

Use the following command to modify system name. This modification

will take effect immediately. You will see it in command prompt prefix.

Begin at privileged configuration mode, configure system name as the following table shows.

Command	Function
---------	----------

Step 1	configure terminal	Enter global
		configuration mode.
Step 2	hostname <name></name>	Configure system name.
		It must start with
		alphabet.
Step 3	hostname default	Restore default

22.4.2 Configure Terminal Display Attribute

This command is used to configure display line number when access by console port or telnet.

Begin at privileged configuration mode, configure terminal display attribure as the followingtable shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	terminal length value	Configure display line
		number.
		Value range is 0-512.

22.4.3 Configure Terminal Time-out Value

Use the following commands to configure terminal time-out value. Default value is 10 minutes.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	line vty	Enter line node
Step 3a	<pre>exec-timeout <min> [<second>]</second></min></pre>	Set the command-line
		timeout
Step 3b	no exec-timeout	Set the command-line
		timeout to default
Step 4	show exec-timeout	Show the command-line
		timeout

22.5 System Basic Operations

22.5.1 Upgrade System

Use the following command to upgrade the equipment.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2b	download tftp image <filename></filename>	Update firmware with
	<a.b.c.d></a.b.c.d>	header.

22.5.2 Network Connectivity Test

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	ping [-s <packetsize>] <a.b.c.d></a.b.c.d></packetsize>	Packetsize is test packet
		length, unit is byte.

Use **ping** command to check network connectivity.

22.5.3 Reboot System

Use the following command to reboot system.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	reboot	Reboot system.

22.5.4 Telnet

You can telent to system via outband or inband management IP. The default outband management IP is 192.168.8.100.

Command	Function
telnet 192.168.200	Telnet to application
	layer of system. Login
	name and passwork

	both are admin .
telnet 192.168.200 2223	Telnet to kernel of
	system. Login name is
	default.
gpon-olt(config)# switch	Telnet to kernel of
	system. Login name is
	default.

22.5.5 Configure RTC System Time

Use the following command to configure RTC system time.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	time set year <2000-2099> month	Configure the RTC clock
	<1-12> day <1-31> hour <0-23>	
	minute <0-59> second <0-59>	
Step 3	show time	Show the system time

22.5.6 NTP Client

Device will update the time auto when you enable the NTP

Command	Function
---------	----------

configure terminal	Enter global
	configuration mode.
ntp server <ip_or_domain></ip_or_domain>	Configure the NTP
	server and enable it
no ntp server	Disable the NTP server
show time	Show the system time
	configure terminal <pre>ntp server <ip_or_domain> no ntp server show time</ip_or_domain></pre>

22.5.7 Timezone Configuration

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	time zone <-12-12>	Configure the timezone
Step 3	show sys timezone	Show the timezone

22.5.8 Fan Control

Use the following command to control fan running attribute.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	fan temperature <20-80>	Configure Temperature

		of the fan
Step 3	fan mode [open close auto]	Configure the fan open
		mode
Step 4	show fan	Show the fan
		configuration and
		current equipment
		temperature

22.6 Debug Information

22.6.1 Enable/Disable CPU Debug Information

Use the following commands to enable or disable CPU debug information.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	debug mode	Enter debug node.
Step 3	system debug {rx tx} {on off}	On off : enable or
		disable CPU debug.
		Rx: CPU receives
		packets.
		Tx: CPU transmits

|--|

22.6.2 Enable/Disable Functional Module Debug Information

Use the following commands to enable or disable function module debug information.

	Command		Function
Step 1	configure terminal		Enter global
_			configuration mode.
Step 2	debug mode		Enter debug node.
Step 3	system de	bug	On off : enable or
	{acl timer port mac vlan vt		disable function module
	igmp cfp qos} {on off}		debug information.

23User Management

23.2 User Privilege

There are two privileges for user, administrator user and normal user. Normal user is a read-only user, only can view system information but not user information, configurations. Administrator user can view all information and configure all parameters.

23.3 Default User

By default, there is a administrator user **admin**, and password is **admin** too. Default user can't be deleted, modified, but you can modify its password.

23.4 Add User Account

	Command			Function
Step 1	configure to	erminal		Enter global
				configuration mode.
Step 2	user	add	user-name	Add new user account.
	login-password login-password			
Step 3	user role	user-name	{admin	Specify user role. New
	normal	enable	e-password	user is a normal

enable-password}	privilege user.
------------------	-----------------

23.5 Show User Account List

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	user list	Show user account list.

23.6 Delete User Account

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2	user delete username	Delete user account.	

23.7 Modify Password

Every user can modify its own password while administrator user can modify other users' password. Modify password as the following table shows.

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2	user login-password user-name	Configure user's login	

	<cr></cr>	password.
	Input new login password for user	
	abc please.	
	New Password:	
	Confirm Password:	
Step 3	user enable-password user-name	Configure user's
	<cr></cr>	configuration mode
	Input new enable password for	password.
	user abc please.	
	New Password:	
	Confirm Password:	

24SNMP Configuration

24.2 SNMP Introduction

SNMP (Simple Network Management Protocol) is an extensive network management protocol at the moment. It is an industrial standard which is adopted and come into use for transmitting management information between two devices. Network administrator can search information, modify information, troubleshoot, diagnose fault, plan capacity and generate resports. SNMP adopts polling mechanism and provides basic functions, especially fits small, fast and low cost conditions. It is based on transport layer protocol UDP.

There are two parts of SNMP, NMS (Network Management Station) and agent. NMS is a station that runs client program, and agent is a server program that runs in device. NMS can send GetRequest, GetNextRequest and SetRequest messages to agent. Then agent will execute read or write command and respond to NMS. Agent also sends trap messages to NMS when device is abnormal.

24.3 SNMP Version and MIB

In order to mark device's management variable uniquely, SNMP identifies management object by hierarchical structure name scheme. The set of objects is like a tree, which the node stands for management object, shown as the following picture.

MIB(Management Information Base), a set of device's variable definition, is used to describe the tree's hierarchical structure. For the management object B in above picture, we can use a string of numbers {1.2.1.1} to describe it uniquely. This string of numbers is Object Identifier.

GPON OLT supports SNMP V1, V2C and V3. Common MIB shows in the following table.

MIB attribute	MIB content	Refer to
Dublic	MIB II based on TCP/IP	RFC1213
MIB	RMON MIB	RFC2819
	Ethernet MIB	RFC2665
Drivata	VLAN MIB	
MIB	Device management	
	Interface management	

24.4 SNMP Configuration

24.4.1 Configure Community

Begin at privileged configuration mode, configure community as the following table shows.

	Command	Function	
Step 1	config terminal	Enter global	
		configuration mode.	
Step 2	<pre>snmp-server community <word></word></pre>	Configure SNMP	
	[ro rw]	community strings;	
Step 3	show snmp-server community	Show the SNMP	
		community	
_		configuration	
Step 4	exit	From the global	
		configuration mode to	
		return to the privileged	
		user configuration	
		mode	
Step 5	write	Save the configuration	

24.4.2 Configure Trap Server Address

Use the following command to configure or remove the Trap messages

of the target host IP address. Begin at privileged configuration mode, Configure Trap the target host address as the following table shows.

	Command	Function
Step 1	config terminal	Enter global
		configuration mode.
Step 2a	snmp-server host	Configure the Trap the
	<a.b.c.d>{udp-port <1-65535>}*1</a.b.c.d>	target host address.
	{version [1 2c]}*1 {community	Configure the
	<word>}*1</word>	community string value
Step 2b	no snmp-server host < A.B.C.D >	Delete trap target host
	version 1 2c 3 community	address.
Step 3a	snmp-server enable traps snmp	Enable SNMP traps
		function
Step 3b	no snmp-server enable traps snmp	Delete SNMP traps
		function
Step 4	show snmp-server targetaddress	Check the SNMP trap
		configuration
Step 5	write	Save the configuration

24.4.3 Configure Contact Information

Begin at privileged configuration mode, Configure contact infromation as the following table shows.

	Command	Function		
Step 1	config terminal	Enter global		
		configuration mode.		
Step 2	snmp-server contact <line></line>	Configure contact string		
		value		
Step 3	show snmp-server contact	Check the SNMP		
		contact configuration.		
Step 4	write	Save the configuration.		

24.4.4 Configure Location Information

Begin at privileged configuration mode, Configure location information as the following table shows.

	Command	Function	
Step 1	config terminal	Enter global	
		configuration mode	
Step 2	snmp-server location <line></line>	Configure location string	
		value	
Step 3	show snmp-server location	Check the SNMP	
		location configuration.	
Step 4	write	Save the configuration.	

25Alarm and Event Management

25.2 Alarm and Event Introduction

If you enable alarm report, it will trigger alarm events when system occured error or did some important operations. The alarm information will be saved in a buffer; you can execute some commands such as show syslog to display. All the alarms can be sent to specific servier.

Alarms include fault alarm and recovery alarm. Fault alarm will not disappear until the fault is repaired and the alarm is cleared.

Events include running envents and secury events, are notifications which generate and inform administrators under a normal condition. The difference between event and alarm is that event generates under a normal condition while alarm generates under an abnormal condition. Command "show alarm-event information" is used to show description, level, type and class of all alarms and events.

25.3 Alarm Management

Alarm severity level includes critical, major, minor and warning. Corresponding level in system log are alerts, critical, major and warnings. Alarm type includes device alarm, communication alarm and disposing alarm.

Device alarm contains low temperature, high temperature, CPU

usage, memory usage, fan, PON, optical power and so on.

- Communication alarm contains port up/down, loopback, PON deregister, PON register failed, PON los, ONU deregister, illegal ONU register, ONU authorized failed, ONU MAC conflication, ONU LOID conflication, ONU link los, ONU dying gasp, ONU link fault, ONU link events, ONU extended OAM notification and so on.
- Dispoing alarm contains upgrade failed, upload configuration file failed, download configuration file failed and so on.

25.3.1 System Alarms

System alarms show the performance and security of system. The following table shows the system alarm list.

System alarm	Reason	Default
temp-high	Device temperature higher than threshold.	disable
temp-low	Device temperature lower than threshold.	disable
cpu-usage-high	CPU usage higher than threshold.	disable
mem-usage-high	Memory usage higher than threshold.	disable
fan	Fan switch.	disable
download-file-faile d	Download file failed	enable
upload-file-failed	Upload file failed.	enable

upgrade-file-failed	Upgrade firmware failed.	enable
port-updown	Port link up and link down.	enable
port-loopback	Port loopback.	disable

	Command	Function		
Step 1	configure terminal Enter global			
		configuration mode.		
Step 2a	alarm {temp-high temp-low	Disable system alarm		
	cpu-usage-high mem-usage-high}	report.		
	disable			
Step 2b	alarm {temp-high temp-low	Enable system alarm		
	cpu-usage-high	report and configure		
	mem-usage-high} enable	system alarm threshold.		
	<alarm-value> <clear-value></clear-value></alarm-value>	alarm-value: alarm		
		threshold.		
		clear-value: clear		
		threshold.		
Step 2c	alarm	Enable or disable system		
	{fan port-updown port-loopback	alarm report.		
	I			
	register-failed deregister }{enable			
	disable}			

Step 3	show alarm configuration	Show	system	alarm
		configu	irations.	

25.3.2 PON Alarms

Get rid of the issue caused by PON port or fiber by monitoring PON alarms, ensure PON works well. The following table shows PON alarm list.

PON alarm	Reason	Default
pon-txpower-hig h	PON port transmitting power higher than threshold.	enable
pon-txpower-lo w	PON port transmitting power lower than threshold.	enable
pon-txbias-high	PON port bias current higher than threshold.	enable
pon-txbias-low	PON port bias current lower than threshold.	enable
pon-vcc-high	PON port voltage higher than threshold.	enable
pon-vcc-low	PON port voltage lower than threshold.	enable
pon-temp-high	PON port temperature higher than threshold.	enable
pon-temp-low	PON port temperature lower than threshold.	enable
pon-los	Fiber unconnected or link fault.	enable

deregister	PON deregister.	disable
register-failed	PON register failed.	enable

Configure global PON alarm as the following table shows.

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	alarm	Enable or disable PON
	{pon-register-failed pon-deregist	alarm report.
	er} {enable disable}	
Step 2a	alarm {pon-txpower-high	Enable or disable PON
	pon-txpower-low pon-txbias-high	port alarm report.
	pon-txbias-low pon-vcc-high	
	pon-vcc-low pon-temp-high	
	pon-temp-low pon-los}	
	{enable disable}	
Step 3	show alarm configuration	Show alarm
		configurations.

Configure PON port alarm as the following table shows. Before this, you must enable global PON alarm. By default, global PON alarm is enabled, the alarms will be record in system log.

Command		Function
Step 1	configure terminal	Enter global

		configuration mode.
Step 2	interface gpon slot/port	Enter PON interface
		configuration mode.
Step 3a	alarm pon optical	Disable PON port alarm
	{tx_power_high	report.
	tx_power_low tx_bias_high tx_b	
	ias_low vcc_high vcc_low	
	temp_high temp_low} disable	
Step 3b	alarm pon optica	Enable PON port alarm
	{tx_power_high tx_power_low	report and configure
	tx_bias_high tx_bias_low	alarm parameters.
	vcc_high vcc_low	alarm-value: alarm
	temp_high temp_low} enable	threshold.
	<alarm-value> <clear-value></clear-value></alarm-value>	clear-value: clear
		threshold.
Step 4	show alarm pon optical	Show PON port alarm
	configuration	configurations.

25.3.3 ONU Alarms

ONU alarms also can help administrator to get rid of some ONU fault.

The following table shows ONU alarm list.

|--|

onu-deregister	ONU deregister	enable
onu-link-lost	ONU fiber unconnected or link fault.	disable
onu-illegal-register	Illegal ONU register.	enable
onu-auth-failed	ONU LOID authorized failed in auto authorization mode or failed caused by packets loss.	enable
onu-mac-conflict	Current PON port exist MAC conflict with authorized ONU in the system.	enable
onu-loid-conflict	Current PON port exist LOID conflict with authorized ONU in the system.	enable
onu-critical-event	ONU critical link event.	enable
onu-dying-gasp	ONU power down.	enable
onu-link-fault	ONU link fault.	enable
onu-link-event	ONU link event	disable
onu-event-notific	ONU extended OAM notification	enable

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	alarm	Enable or disable ONU
	{onu-deregister onu-link-lost	alarm report.

	onu-illegal-register onu-auth-fail			
	ed			
	onu-mac-conflict onu-loid-conflic			
	t			
	onu-critical-event onu-dying-gasp			
	onu-link-fault onu-link-event			
	onu-event-notific}			
	{enable disable}			
Step 3	show alarm configuration	Show	system	alarm
		configu	rations.	

25.4 Event Management

Event severity level includes critical, major, minor and warning. Corresponding level in system log are alerts, critical, major, warnings. Event type includes device event, communication event and diposing event.

- Device event contains device reboot, PON event and so on.
- Communication event contains PON register, PON los recovery, ONU register, ONU find, ONU authorized successful, ONU deregister successful and so on.
- Disposing event contains save configuration event, erase configuration event, download configuration file successful, upload

configuration file successful, ungrade successful and so on.

25.4.1 System Events

System events are mainly used to monitor performation and security of system, ensure system works well.

System event	Reason	Default
reset	Device reset.	disable
config-save	Save configuration.	enable
config-erase	Erase configuration.	enable
download-file-succ ess	Download file successful.	enable
upload-file-success	Upload file successful.	enable
upgrade-file-succe ss	Upgrade firmware successful.	enable

	Command	Function	
Step 1	configure terminal	Enter global	
		configuration mode.	
Step 2a	event reset {enable disable}	Enable or disable system	
		event report.	
Step 3	show event configuration	Show system event	
		configurations.	

25.4.2 PON Events

Get rid of the issue caused by PON port or fiber by monitoring PON events, ensure PON works well. The following table shows PON event list.

PON event	Reason	Default
pon-register	PON register.	disable
pon-los-recovery	PON los recovery.	enable

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	event	Enble or disable PON
	{pon-register pon-los-recovery}	event report.
	{enable disable}	
Step 3	show event configuration	Show system event
		configurations.

25.4.3 ONU Events

ONU events also can help administrator to get rid of some ONU fault.

The following table shows ONU event list.

ONU event	Reason	Default
onu-register	ONU register.	enable
onu-link-discover	ONU discover.	disable
------------------------	---------------------------------	------------
onu-auth-success	OLT authorizes C successful.	NU enable
onu-deauth-succes s	OLT deauthorizes C successful.	NU disable

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2b	event	Enable or disable ONU
	{onu-register onu-link-discover	event report.
	onu-auth-success onu-deauth-suc	
	cess} {enable disable}	
Step 3	show event configuration	Show system event
		configuration.

26System Log

26.2 System Log Introduction

System log is mainly used to record running condition and user operant behavior of the whole system. It is helpful for administrator to know and monitor system working condition, record abnormal information. System log comes from all the running module of system. Log system gather, manage, save and display the information. It can be shown in the deivce when you need to debug or check system status, and also can be sent to a server for long-term running status and operation tracking.

26.2.1 Log Type

System log has five types:

• Abnormal information log

Abnormal information log mainly records the abnormal phenomenon of each module, such as abnormal response, inside state machine error, key process execute error and so on.

Alarm log

Alarm log mainly records the information from alarm module. Critical alarm, major alarm, minor alarm and warning are corresponding with alerts, critical, major, warnings log level respectively.

Event log

Event log mainly records the information from event module. Critical event, major event, minor event and warning are corresponding with alerts, critical, major, warnings log level respectively.

• Operation log

Operation log mainly records the informations from CLI and SNMP.

• Debug log

Debug log mainly records the information from networking debugging, such as received IGMP messages, RSTP BPDU messages, state machine skip and so on.

26.2.2 System Log Level

Syslog information level reference:

Log level	Log contrast
7:emergencie	Abnormal log
S	Abriormariog
Geolorte	Alarm/event log(urgent)
0.816115	Abnormal log
Everitical	Alarm/event log(major)
5.critical	Abnormal log
Amaior	Alarm/event log(minor)
4.111aj01	Abnormal log
3:warnings	Alarm/event log(warning)

	Abnormal log
2:notification	Operation log
S	Operation log
1:information	Operation las
al	Operation log
0:debugging	Debug log

26.3 Configure System Log

26.3.1 Show System Log

	Command			Function
Step 1	configure ter	minal		Enter global
				configuration mode.
Step 2	Show	syslog	[level	Show all system log or
	{debug info	notice		log of specific level.
	warning maj	jor critical ale	ert em	
	erg}]			

26.3.2 Clear System Log

	Command	ł		Function
Step 1	configure terminal		Enter global	
				configuration mode.
Step 2	Clear	syslog	[level	Clear all system log or

{debug info notice	log of specific level.
warning major critical alert em	
erg}]	

26.3.3 Configure System Log Server

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2a	syslog server ip <a.b.c.d> port</a.b.c.d>	Configure system log
	<1-65535>	server IP and port.
Step 2b	no syslog server	Delete system log server
		configuration.
Step 3	show syslog server	Show system log server
		configuration.

26.3.4 Configure Save Level of System Log

	Command			Function
Step 1	configure t	erminal		Enter global
				configuration mode.
Step 2	syslog	flash	level	System log will be saved
	{debug inf	fo notice		to flash if it is higher
	warning m	najor critical	alert em	than you set.

	erg}	
Step 3	show syslog flash level	Show system log level in
		flash.

26.3.5 Save System Log to Flash

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	save syslog flash	Save system log to flash.

26.3.6 Clear System Log in Flash

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	clear syslog flash	Clear system log in flash.

26.3.7 Upload System Log

	Command	Function
Step 1	configure terminal	Enter global
		configuration mode.
Step 2	upload tftp syslog <filename></filename>	Upload system log to
	<a.b.c.d></a.b.c.d>	local host byTFTP.