

SR1002 Mini FTTH Optical Receiver Manual

HANGZHOU SOFTEL OPTIC CO., LTD

2016.05

1. Product Summary

SR1002 optical receiver is our latest 1GHz FTTB bidirectional optical receiver. With wide range receiving optical power, high output level, low power consumption. It is the ideal equipment to build the high-performance NGB network.

2. Performance Characteristics

Adopt advanced optical AGC technique, optical AGC control range: +2dBm \sim -9/-8/-7/-6/-5/-4dBm adjustable;

Forward working frequency extended to 1GHz, RF amplifier part adopts the high performance low power consumption GaAs chip, the maximum output level up to 106dBuv;

EQ and ATT both use the professional electric control circuit, make the control more accurate, operation more convenient;

Built-in the standard II class network management responder, support remote network management (optional);

With compact structure, convenient installation, it is the first choice equipment of FTTB CATV network; Built-in high reliability low power consumption power supply;

3. Technique Parameter

ltem	Unit	Technical Parameters		
Optical Parameters				
Receiving Optical Power	dBm	-9 ~ +2		
Optical AGC Range	dBm	+2 ~ -9/-8/-7/-6	5/-5/-4 (ad	justable)
Optical Return Loss	dB	>-	45	
Optical Receiving Wavelength	nm	1100 -	~ 1600	
Optical Connector Type		SC/APC or spec	ified by th	e user
Fiber Type		Single	mode	
	Lin	k performance		
C/N	dB	≥ 51		
С/СТВ	dB	≥ 60		Note1
C/CSO	dB	≥ 60		
RF Parameters				
Frequency Range	MHz	45/87 ~862/1003		
Flatness in Band	dB	±0.75		
		FZ110 output FP204 output		204 output
Rated Output Level	dBµV	≥ 108	≥ 104	
		≥ 108 (-9 ~ +2dBm	≥ 104	l (-9 ~ +2dBm
Max Output Level	dBull	Optical power receiving)	Optical	power receiving)
	υσμν	≥ 112 (-7 ~ +2dBm	≥ 108	8 (-7 ~ +2dBm
		Optical power receiving)	Optical	power receiving)
Output Return Loss	dB	≥16		
Output Impedance	Ω	75		
Electrical control EQ range	dB	0~15		
Electrical control ATT range	dBµV	0~15		

SOFTEL[®]

Optical Parameters				
Optical Emission Wavelength	nm	1310±10, 1550±10 or specified by the user		
Output Optical Power	mW	1 (or specified by the user)		
Optical Connector Type		SC/APC		
	[RF Parameters		
Frequency Range MHz 5 ~ 65 (or specified by the user)			cified by the user)	
Flatness In Band	dB	±1		
Input Level	dBµV	75 ~85 (Rated input level 79)		
Output Impedance	Ω	75		
NPR dynamic range	dB	≥15 (NPR≥30 dB)	≥10 (NPR≥30 dB)	
		Use DFB laser	Use FP laser	
General Characteristics				
Power Voltage	V	AC (150~265) V or DC 12V		
Operating Temperature	°C	-30~60		
Storage Temperature	°C	-40~65		
Relative Humidity	%	Max 95% No Condensation		
Consumption	VA	≤9		
Dimension	mm	190 (L) * 110 (W) * 52 (H)		

Note 1: Configure 59 PAL-D analog channel signals at the 550MHz frequency range. Transmit digital signal at the frequency range of $550 \sim 862/1003$ MHz. The digital signal level (in 8MHz bandwidth) is 10dB lower than analog signal carrier level. When the input optical power of the optical receiver is -1dBm, the output level: 108dBµV, EQ: 8dB.

4. Block Diagram

SR1002 with II class network management transponder, FZ110 (tap) output block diagram

SR1002 with II class network management transponder, FP204 (two-way splitter) output

block diagram

SOFTEL[®]

SR1002 without network management transponder, FZ110 (tap) output block diagram

SR1002 without network management transponder, FP204 (two-way splitter) output block

diagram

5. Relation Table of Input Optical Power and CNR

6. Function Display and Operating Instruction

Mode: Mode selection button, total eleven modes. Press the mode selection button to enter the corresponding status display, eleven modes to cycle.

The following is the detailed instructions:

SOFTE **SR1002 Optical Receiver Manual** 188 Mode 1: Input optical power (unit dBm) D: Means that the optical power is low or none : Means that the displayed data is the input optical power Mode E1: Forward RF equilibrium, press "▲ "or " ▼" button for a few seconds until the data flicker. Then adjust and press "Mode" to confirm. The maximum adjustment range is 15dB. EQ mode, means that the controlled and displayed data is the forward RF channel equilibrium. Mode A1: Forward RF attenuation, press " seconds until the data flicker. Then adjust and press "Mode" to confirm. The maximum adjustment range is 15dB. 🖁 🔓 ATT mode, means that the controlled and displayed data is the forward RF channel attenuation. Mode 2: The actual number of channels enters into the current network system. Press " "or " " " button for a few seconds until the data flicker. Then adjust and press "Mode" to confirm. The maximum number is 200. The menu is used to display the actual number of channels enters into the current network system, in order to calculate the RF output level more accurately. Mode 3: RF output level (unit dBuV) Means that the displayed data is the RF output level under the current system. Mode 4: Working temperature (unit°C) Sector in the displayed data is the internal actual sector is the internal actual sector is the internal sector is ambient temperature. Mode 5: The actual value of +8V working voltage ${\bf G}$: Means that the displayed data is the actual voltage of +8V Mode AG: AGC adjustment range (adjustment range -4~-9dBm) Press "▲ "or "▼" button for a few seconds until the data flicker. Then adjust and press "Mode" to confirm. 📲 🔓 Means that the AGC range under the current system is +2~-9dBm If the displayed data is -4, means that the AGC range is +2~-4dBm If the displayed data is -5, means that the AGC range is +2~-5dBm If the displayed data is -6, means that the AGC range is +2~-6dBm If the displayed data is -7, means that the AGC range is +2~-7dBm If the displayed data is -8, means that the AGC range is +2~-8dBm Note: AGC range per reduce 1dBm, the output level is raised by 2 dBuV

7. Structure Description

1	LED digital display tube	2	Mode key	3	Up key
4	Down key	5	Optical receiving port	6	Optical output port
	Network management				
7	RJ45 interface	8	Output 2	9	Output 1
10	Power input				

8. NMS setup instructions

If users configured the network management responder, need to do the following settings: **Responder IP setup instruction:**

Network management directly modify:

1. Default IP is 192.168.1.168 , default gateway is 192.168.1.1 , default subnet mask is 255.255.255.0

2. Connect the computer and responder (can be direct connected), and change the computer IP to 192.168.1.XXX (XXX is any number from 0 to 255 except 168); start upper computer network management software, then search the device and log in.

3. Right-click device icon and choose modify the device IP.

4. Enter new IP address, gateway and subnet mask.

Lodify IP	
New IP Addr:	192.168.1.168
New Gateway Addr:	192.168.1.1
New subnet mask:	255.255.255.0
Modify(Q)	Cancel (1)

5. Click modify, then exit, it is done. There will show new IP address and gateway on operational logbook.

Log Number	Log Type	Log Contents	Login time
1752	ChangIPAddress	Modify equipment192,168,1,168 IP address; New IP: 192,168,1,167;New gateway:192,168,1,1	2009-9-9 12:39:03

6. Reboot the responder, the new IP take effect (Click the reboot button in the network management software or power on again)

2 H WITT PENT		
192.168.1.19		
0.0.0.0	Logical ID:	Optical Receiver Station
0.0.0		
	Model Type:	WR1001JS
	S/N:	SN-0PRV-0000001
	MAC Address:	3071B2605267
(Reboot responder	

9. Common Failure Analysis and Troubleshooting

SOFTEL[®]

SR1002 Optical Receiver Manual

Failure phenomenon	Failure cause	Solution	
		1. Check the input optical power and make	
After connecting the	1. The input optical power of the	appropriate adjustments to make it in the	
network, the image of the	optical receiver is too high, make the	specified range; or adjust the attenuation of	
optical contact point has	output level of the optical receiver	optical receiver to reduce the output level and	
obvious netlike curve or	module too high and RF signal index	improve index.	
large particles highlights	deteriorate.	2. Check the front end machine room optical	
but the image background	2. The RF signal (input the optical	transmitter RF signal index and make	
is clean.	transmitter) index is poor.	appropriate adjustments.	
		1. Check the received optical power of the	
		optical contact point and make appropriate	
		adjustments to make it in the specified range.	
		2. Recover the received optical power of the	
		optical contact point by cleaning the optical	
	1. The input optical power of the	fiber connector or adapter etc methods.	
	optical receiver is not high enough,	Specific operation methods see "Clean and	
	results in the decrease of C/N.	maintenance method of the optical fiber	
	2. The optical fiber active connector	active connector".	
	or adapter of the optical receiver has	3. Check the RF signal level input the optical	
	been polluted.	transmitter and adjust to the required input	
	3. The RF signal level input the	range. (When the input channels number less	
	optical transmitter is too low, make	than 15, should higher than nominal value.)	
After connecting the	modulation degree of the laser is not	4. Use a spectrum analyzer to check the	
network, the image of the	enough	system link C/N and make appropriate	
optical contact point has	4. The C/N index of system link	adjustments. Make sure the system link signal	
obvious noises.	signal is too low.	C/N > 51dB.	
		1. Check if there is strong interference signal	
		source: change the optical contact point	
		location if possible to avoid the influence of	
		strong interference signal source	
		2 Check the cable lines of the ontical contact	
After connecting the		point if there is shielding net or situation that	
network the images of		the RE connector shielding effect is not good	
several optical contact		3 Tightly closed the equipment enclosure to	
points randomly appear	The optical contact point has open	ensure the shielding effect: if possible add	
obvious noises or bright	circuit signal interference or strong	shielding cover to the optical contact point	
traces.	interference signal intrusion	and reliable grounding.	
After connecting the			
network, the images of		Check arounding situation of the equipment	
several optical contact	Power supply AC ripple interference	make sure that every equipment in the line	
points appear one or two	because of the bad earth of equipment	has been reliably grounding and the	
horizontal bright traces.	or power supply.	grounding resistance must be $< 4\Omega$.	

After connecting the		
network, the received		1. Check the type of optical fiber active
optical power of the optical	The optical fiber active connector	connector and adopt the APC type optical
contact point is unstable	types do not match, maybe the APC	fiber active connector to ensure the normal
and has large continuous	type connect to PC type, make the	transmission of optical signal.
change. The output RF	optical signal cannot normal	2. Clean the polluted optical fiber active
signal is unstable, too. But	transmission.	connector or adapter. Specific operation
the detected output optical	The optical fiber active connector or	methods see "Clean and maintenance method
power of the optical	adapter may be polluted seriously or	of the optical fiber active connector".
transmitter is normal.	the adapter has been damaged.	3. Replace the damaged adapter.

10. Clean and maintenance method of the optical fiber active connector

In many times, we misjudge the decline of the optical power or the reduce of optical receiver output level as the equipment faults, but actually it may be caused by the incorrect connection of the optical fiber connector or the optical fiber connector has been polluted by the dust or dirt.

Now introduce some common clean and maintenance methods of the optical fiber active connector.

- **1.** Carefully pull off the optical fiber active connector from the adapter. The optical fiber active connector should not aim at the human body or the naked eyes to avoid accidental injury.
- 2. Wash carefully with good quality lens wiping paper or medical degrease alcohol cotton. If use the medical degrease alcohol cotton, still need to wait 1~2 minutes after wash, let the connector surface dry in the air.
- **3.** The cleaned optical fiber active connector should be connected to optical power meter to measure output optical power to affirm whether it has been cleaned up.
- **4.** When connect the cleaned optical fiber active connector back to adapter, should notice to make the force appropriate to avoid the ceramic tube in the adapter crack.
- 5. If the output optical power is not normal after cleaning, should pull off the adapter and clean the other connector. If the optical power still low after cleaning, the adapter may be polluted, clean it. (Note: Be carefully when pull off the adapter to avoid hurting inside fiber.)
- 6. Use the dedicated compressed air or degrease alcohol cotton bar to clean the adapter. When use the compressed air, the muzzle of the compressed air tank should aims at the ceramic tube of the adapter, clean the ceramic tube with compressed air. When use degrease alcohol cotton bar, carefully insert the alcohol cotton bar into the ceramic tube to clean. The insert direction should be consistent, otherwise can not reach ideal cleaning effect.